26 research outputs found

    Temporal trends (2000–2011) and influences on fishery-independent catch rates for loggerhead sea turtles (Caretta caretta) at an important coastal foraging region in the southeastern United States

    Get PDF
    Seasonal trawling was conducted randomly in coastal (depths of 4.6–17 m) waters from St. Augustine, Florida, (29.9°N) to Winyah Bay, South Carolina (33.1°N), during 2000–03, 2008–09, and 2011 to assess annual trends in the relative abundance of sea turtles. A total of 1262 loggerhead sea turtles (Caretta caretta) were captured in 23% (951) of 4207 sampling events. Capture rates (overall and among prevalent 5-cm size classes) were analyzed through the use of a generalized linear model with log link function for the 4097 events that had complete observations for all 25 model parameters. Final models explained 6.6% (70.1–75.0 cm minimum straight-line carapace length [SCLmin]) to 14.9% (75.1–80.0 cm SCLmin) of deviance in the data set. Sampling year, geographic subregion, and distance from shore were retained as significant terms in all final models, and these terms collectively accounted for 6.2% of overall model deviance (range: 4.5–11.7% of variance among 5-cm size classes). We retained 18 parameters only in a subset of final models: 4 as exclusively significant terms, 5 as a mixture of significant or nonsignificant terms, and 9 as exclusively nonsignificant terms. Four parameters also were dropped completely from all final models. The generalized linear model proved appropriate for monitoring trends for this data set that was laden with zero values for catches and was compiled for a globally protected species. Because we could not account for much model deviance, metrics other than those examined in our study may better explain catch variability and, once elucidated, their inclusion in the generalized linear model should improve model fits

    Catch rates and demographics of loggerhead sea turtles (Caretta caretta) captured from the Charleston, South Carolina, shipping channel during the period of mandatory use of turtle excluder devices (TEDs)

    Get PDF
    Trawling was conducted in the Charleston, South Carolina, shipping channel between May and August during 2004–07 to evaluate loggerhead sea turtle (Caretta caretta) catch rates and demographic distributions. Two hundred and twenty individual loggerheads were captured in 432 trawling events during eight sampling periods lasting 2–10 days each. Catch was analyzed by using a generalized linear model. Data were fitted to a negative binomial distribution with the log of standardized sampling effort (i.e., an hour of sampling with a net head rope length standardized to 30.5 m) for each event treated as an offset term. Among 21 variables, factors, and interactions, five terms were significant in the final model, which accounted for 45% of model deviance. Highly significant differences in catch were noted among sampling periods and sampling locations within the channel, with greatest catch furthest seaward consistent with historical observations. Loggerhead sea turtle catch rates in 2004–07 were greater than in 1991–92 when mandatory use of turtle excluder devices was beginning to be phased in. Concurrent with increased catch rates, loggerheads captured in 2004–07 were larger than in 1991–92. Eighty-five percent of loggerheads captured were ≤75.0 cm straight-line carapace length (nuchal notch to tip of carapace) and there was a 3.9:1 female-to-male bias, consistent with limited data for this location two decades earlier. Only juvenile loggerheads ≤75.0 cm possessed haplotypes other than CC-A01 or CC-A02 that dominate in the region. Six rare and one un-described haplotype were predominantly found in June 2004

    Cultivating epizoic diatoms provides insights into the evolution and ecology of both epibionts and hosts

    Get PDF
    11 pages, 3 figures, 1 table, supplementary information https://doi.org/10.1038/s41598-022-19064-0.-- Data availability: DNA sequence data generated for this study are published on the NCBI GenBank online sequence depository under the accession numbers listed in Table S1. Additional micrographs and cleaned voucher material from the sequenced cultures are available from lead author MPAOur understanding of the importance of microbiomes on large aquatic animals—such as whales, sea turtles and manatees—has advanced considerably in recent years. The latest observations indicate that epibiotic diatom communities constitute diverse, polyphyletic, and compositionally stable assemblages that include both putatively obligate epizoic and generalist species. Here, we outline a successful approach to culture putatively obligate epizoic diatoms without their hosts. That some taxa can be cultured independently from their epizoic habitat raises several questions about the nature of the interaction between these animals and their epibionts. This insight allows us to propose further applications and research avenues in this growing area of study. Analyzing the DNA sequences of these cultured strains, we found that several unique diatom taxa have evolved independently to occupy epibiotic habitats. We created a library of reference sequence data for use in metabarcoding surveys of sea turtle and manatee microbiomes that will further facilitate the use of environmental DNA for studying host specificity in epizoic diatoms and the utility of diatoms as indicators of host ecology and health. We encourage the interdisciplinary community working with marine megafauna to consider including diatom sampling and diatom analysis into their routine practicesFinancial support for sequencing and SEM comes from the Jane and the Roland Blumberg Centennial Professorship in Molecular Evolution at UT Austin and the US Department of Defense (grant number W911NF-17-2-0091). Sampling in South Africa was done with partial financial support from The Systematics Association (UK) through the Systematics Research Fund Award granted to RM (2017 and 2020). Work in the Adriatic Sea was supported by Croatian Science Foundation, project UIP-05-2017-5635 (TurtleBIOME). KF has been fully supported by the “Young researchers' career development project – training of doctoral students” of the CSF funded by the EU from the European Social Fund. NJR was funded by the Spanish government (AEI) through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    Climate-mediated population dynamics for the world’s most endangered sea turtle species

    No full text
    Abstract Restricted range, and subsequently small population size, render Kemp’s ridley sea turtles (Lepidochelys kempii) the most globally endangered sea turtle species. For at least two decades preceding conservation, high egg harvest rates reduced annual cohort recruitment. Despite > 50 years of dedicated conservation, annual nest counts remain well below a landmark 1947 level. Prior studies attribute less robust than anticipated nest count rebound to multiple contemporary concerns; however, analyses herein convey optimistic interpretation. In objective 1, improved analysis of the ratio of hatchlings to nests since 1966 suggested age structure stabilization as a more likely basis for nest count trends after 2005 than density-dependent effects. In objective 2, multiple regression revealed a lagged (≤ 13 years prior) climate influence on nests (adj. r2 = 0.82) and hatchlings per nest (adj. r2 = 0.94) during 2006–2022. In objectives 3 and 4, a simulator modeled population response to changes in a suite of demographic rates including survival. Across 32 models, high survival and dynamic cohort sex ratio, sexual maturity age, and the ratio of clutch frequency to remigration interval best explained nesting trends during 1966–2022. These novel findings provide alternative perspective for evaluating species recovery criteria and in turn refine future nest trend expectations

    Plasma Vitellogenin in Free-Ranging Loggerhead Sea Turtles (Caretta caretta) of the Northwest Atlantic Ocean

    No full text
    Vitellogenin is the egg yolk precursor protein produced by oviparous vertebrates. As endogenous estrogen increases during early reproductive activity, hepatic production of vitellogenin is induced and is assumed to be complete in female sea turtles before the first nesting event. Until the present study, innate production of vitellogenin has not been described in free-ranging sea turtles. Our study describes circulating concentrations of vitellogenin in loggerhead sea turtles (Caretta caretta) from the Northwest Atlantic Ocean. We collected blood samples from juveniles and adults via in-water captures off the coast of the Southeast USA from May to August, and from nesting females in June and July at Hutchinson Island, Florida. All samples were analyzed using an in-house ELISA developed specifically to measure Caretta caretta vitellogenin concentration. As expected, plasma vitellogenin declined in nesting turtles as the nesting season progressed, although it still remained relatively elevated at the end of the season. In addition, mean vitellogenin concentration in nesting turtles was 1,000 times greater than that measured in samples from in-water captures. Our results suggest that vitellogenesis may continue throughout the nesting season, albeit at a decreasing rate. Further, vitellogenin detected in turtles captured in-water may have resulted from exposure to endocrine disrupting chemicals

    Historical versus Contemporary Climate Forcing on the Annual Nesting Variability of Loggerhead Sea Turtles in the Northwest Atlantic Ocean

    Get PDF
    <div><p>A recent analysis suggested that historical climate forcing on the oceanic habitat of neonate sea turtles explained two-thirds of interannual variability in contemporary loggerhead (<i>Caretta caretta</i>) sea turtle nest counts in Florida, where nearly 90% of all nesting by this species in the Northwest Atlantic Ocean occurs. Here, we show that associations between annual nest counts and climate conditions decades prior to nest counts and those conditions one year prior to nest counts were not significantly different. Examination of annual nest count and climate data revealed that statistical artifacts influenced the reported 31-year lag association with nest counts. The projected importance of age 31 neophytes to annual nest counts between 2020 and 2043 was modeled using observed nest counts between 1989 and 2012. Assuming consistent survival rates among cohorts for a 5% population growth trajectory and that one third of the mature female population nests annually, the 41% decline in annual nest counts observed during 1998–2007 was not projected for 2029–2038. This finding suggests that annual nest count trends are more influenced by remigrants than neophytes. Projections under the 5% population growth scenario also suggest that the Peninsular Recovery Unit could attain the demographic recovery criteria of 106,100 annual nests by 2027 if nest counts in 2019 are at least comparable to 2012. Because the first year of life represents only 4% of the time elapsed through age 31, cumulative survival at sea across decades explains most cohort variability, and thus, remigrant population size. Pursuant to the U.S. Endangered Species Act, staggered implementation of protection measures for all loggerhead life stages has taken place since the 1970s. We suggest that the 1998–2007 nesting decline represented a lagged perturbation response to historical anthropogenic impacts, and that subsequent nest count increases since 2008 reflect a potential recovery response.</p></div

    Remigration interval effects on loggerhead sea turtle (<i>Caretta caretta</i>) nest counts on Florida index beaches.

    No full text
    <p>Observed nest counts (A) were filtered into two (B), three (C), and four (D) year data series to evaluate remigration interval effects on interannual variability in nest counts and model performance. Data series orders for panels B–D were assigned as follows: first (red), second (dark blue), third (green), fourth (light blue). The multi-decadal shift between high (1998) and low (2007) annual nest counts was a common feature to the original and the filtered data series; however, inconsistencies in the interannual signal among the filtered data series within each remigration interval demonstrate the importance of contemporary environmental conditions on annual sea turtle nest counts.</p

    Associations between climate indices and loggerhead (<i>Caretta caretta</i>) sea turtle nesting on Florida index beaches.

    No full text
    <p>Percent similarity (y-axis) between the NAO (blue line) and annual nest counts at 15 Florida index beaches (1989 to 2012) peaked a year prior to nesting; however, percent similarity for the AMO (red line) and the ENSO (green line) and annual nest counts peaked at 32 and 33 years prior to nesting, respectively.</p

    The relative importance of neophyte (A) and remigrant (B) nesters.

    No full text
    <p>Neophyte recruitment at 15 Florida index beaches during 2020–2043 was computed using observed nest counts at these beaches during 1989–2012 and assuming consistent stage- and age-based survival through age 31 across cohorts. Remigrant population size for the same period was evaluated under a range of scenarios contingent upon nesting in 2019. In scenario A (blue lines), nesting in 2019 was assumed to be the same as in 2012. In scenario B (green lines), nesting in 2019 was 258% greater than in 2012 following 20% annual increases after 2012. In scenario C (red lines), nesting in 2019 was 79% less than in 2012 following 20% annual decreases beginning in 2013.</p

    Descriptive statistics for predictions of loggerhead sea turtle (<i>Caretta caretta</i>) nest counts at 15 Florida index beaches during 1989 to 2012 based on historical (AMO) and contemporary (NAO) environmental influences.

    No full text
    <p>Statistics provided include model equations and their corresponding coefficient of determination (r<sup>2</sup>) and correlation coefficients (r), as well as parameter significance (P-value; *if <0.05) and the percent sums of squares (%SS) associated with each parameter as a function of model term entry order.</p
    corecore