1,707 research outputs found

    Three-fermion problems in optical lattices

    Full text link
    We present exact results for the spectra of three fermionic atoms in a single well of an optical lattice. For the three lowest hyperfine states of Li6 atoms, we find a Borromean state across the region of the distinct pairwise Feshbach resonances. For K40 atoms, nearby Feshbach resonances are known for two of the pairs, and a bound three-body state develops towards the positive scattering-length side. In addition, we study the sensitivity of our results to atomic details. The predicted few-body phenomena can be realized in optical lattices in the limit of low tunneling.Comment: 4 pages, 4 figures, minor changes, to appear in Phys. Rev. Let

    Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory

    Full text link
    Neutron matter presents a unique system for chiral effective field theory (EFT), because all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N3LO). We present the first complete N3LO calculation of the neutron matter energy. This includes the subleading three-nucleon (3N) forces for the first time and all leading four-nucleon (4N) forces. We find relatively large contributions from N3LO 3N forces. Our results provide constraints for neutron-rich matter in astrophysics with controlled theoretical uncertainties.Comment: 5 pages, 4 figures; improved version, 3N ring and 2pi-contact contributions corrected, conclusions unchanged; v3: minor changes, published versio

    Chiral three-nucleon forces and pairing in nuclei

    Full text link
    We present the first study of pairing in nuclei including three-nucleon forces. We perform systematic calculations of the odd-even mass staggering generated using a microscopic pairing interaction at first order in chiral low-momentum interactions. Significant repulsive contributions from the leading chiral three-nucleon forces are found. Two- and three-nucleon interactions combined account for approximately 70% of the experimental pairing gaps, which leaves room for self-energy and induced interaction effects that are expected to be overall attractive in nuclei.Comment: 4 pages, 3 figure

    Neutron matter from chiral effective field theory interactions

    Full text link
    The neutron-matter equation of state constrains the properties of many physical systems over a wide density range and can be studied systematically using chiral effective field theory (EFT). In chiral EFT, all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N3LO). We present details and additional results of the first complete N3LO calculation of the neutron-matter energy, which includes the subleading three-nucleon as well as the leading four-nucleon forces, and provides theoretical uncertainties. In addition, we discuss the impact of our results for astrophysics: for the supernova equation of state, the symmetry energy and its density derivative, and for the structure of neutron stars. Finally, we give a first estimate for the size of the N3LO many-body contributions to the energy of symmetric nuclear matter, which shows that their inclusion will be important in nuclear structure calculations.Comment: published version; 21 pages, 11 figures, 5 table

    Pairing in neutron matter: New uncertainty estimates and three-body forces

    Full text link
    We present solutions of the BCS gap equation in the channels 1S0{}^1S_0 and 3P2−3F2{}^3P_2-{}^3F_2 in neutron matter based on nuclear interactions derived within chiral effective field theory (EFT). Our studies are based on a representative set of nonlocal nucleon-nucleon (NN) plus three-nucleon (3N) interactions up to next-to-next-to-next-to-leading order (N3^3LO) as well as local and semilocal chiral NN interactions up to N2^2LO and N4^4LO, respectively. In particular, we investigate for the first time the impact of subleading 3N forces at N3^3LO on pairing gaps and also derive uncertainty estimates by taking into account results for pairing gaps at different orders in the chiral expansion. Finally, we discuss different methods for obtaining self-consistent solutions of the gap equation. Besides the widely-used quasi-linear method by Khodel et al. we demonstrate that the modified Broyden method is well applicable and exhibits a robust convergence behavior. In contrast to Khodel's method it is based on a direct iteration of the gap equation without imposing an auxiliary potential and is straightforward to implement

    Debt Settlement: A Beast of Burden Without Any Reins

    Get PDF

    The chiral condensate in neutron matter

    Get PDF
    We calculate the chiral condensate in neutron matter at zero temperature based on nuclear forces derived within chiral effective field theory. Two-, three- and four-nucleon interactions are included consistently to next-to-next-to-next-to-leading order (N3LO) of the chiral expansion. We find that the interaction contributions lead to a modest increase of the condensate, thus impeding the restoration of chiral symmetry in dense matter and making a chiral phase transition in neutron-rich matter unlikely for densities that are not significantly higher than nuclear saturation density.Comment: published version, 6 pages, 4 figure
    • …
    corecore