122 research outputs found

    Statistics of microcavity polaritons under non-resonant excitation

    Full text link
    A model describing amplification and quantum statistics of the exciton polaritons with k=0 in a non-resonantly excited semiconductor quantum well embedded in a microcavity is presented. Exploiting the bottleneck effect for exciton polaritons, it is assumed that the polaritons with k different from 0 act as a reservoir. The time evolution of the k=0 polaritons is described by a master equation, in which two- and one-polariton transitions between the mode with k=0 and the reservoir are accounted for. The k=0 mode exhibits a threshold depending on the material parameters and on the injected exciton density. Below threshold the quantum statistics of the emission is characteristic of an incoherent process, while above threshold it approaches that of a laser.Comment: 23 pages, 7 figure

    Expression of GPR17 receptor in a murine model of perinatal brain neuroinflammation and its possible interaction with Wnt pathway

    Get PDF
    Oligodendrocyte precursor cells (OPCs) are generated in specific germinal regions and progressively maturate to myelinating cells. Oligodendrocytes (OLs) differentiation is regulated by a complex interplay of intrinsic, epigenetic and extrinsic factors, including Wnt and the G protein-coupled receptor referred to as GPR17 (Mitew et al., 2014). This receptor responds to both extracellular nucleotides (UDP, UDP-glucose) and cysteinyl-leukotrienes (Ciana et al., 2006), endogenous signaling molecules involved in inflammatory response and in the repair of brain lesions. GPR17 is highly expressed in OPCs during the transition to immature OLs, but it is down-regulated in mature cells. Accordingly, GPR17-expressing OPCs are already present in mice at birth, increase over time, reach a peak at P10, before the peak of myelination, and then decline in the adult brain (Boda et al., 2011). Of note, in cultured OPCs, early GPR17 silencing has been shown to profoundly affect their ability to generate mature OLs (Fumagalli et al., 2011, 2015). Myelination defects characterize many brain disorders, including perinatal brain injury caused by systemic inflammation (Favrais et al., 2011), which is a leading cause of preterm birth. It has already been suggested that an imbalance in the Wnt/\u3b2-catenin/TCF4 pathway could be involved in the maturation arrest of OLs that is observed in premature infants (Yuen et al., 2014). No data are currently available on GPR17 in perinatal brain injury and on its possible interaction with Wnt pathway. Based on these premises, the aim of this work was to assess if the maturational blockade of OLs due to mild systemic perinatal inflammation, induced by intraperitoneal injections of interleukin-1\u3b2 (IL- 1\u3b2), is accompanied by defects in GPR17 expression and whether the Wnt pathway is involved in the regulation of GPR17. Data showed that in newborn mice exposed to IL-1\u3b2, which induces a blockade of oligodendrocyte maturation, GPR17 expression is not affected at early time point (P5), but it is downregulated at P10, when its expression should be maximal. Moreover, in vitro studies revealed that the maturation blockade of the oligodendroglial cell line Oli-Neu, after treatment with a Wnt Agonist II, is accompanied by a severe inhibition of GPR17 expression. In conclusion, our data have shown that myelination defects observed in perinatal brain injury are associated with defects in GPR17 expression; further studies are needed to characterize the molecular link between Wnt pathway and GPR17 receptor

    Interaction of the NRF2 and p63 transcription factors promotes keratinocyte proliferation in the epidermis

    Get PDF
    Epigenetic regulation of cell and tissue function requires the coordinated action of transcription factors. However, their combinatorial activities during regeneration remain largely unexplored. Here, we discover an unexpected interaction between the cytoprotective transcription factor NRF2 and p63-a key player in epithelial morphogenesis. Chromatin immunoprecipitation combined with sequencing and reporter assays identifies enhancers and promoters that are simultaneously activated by NRF2 and p63 in human keratinocytes. Modeling of p63 and NRF2 binding to nucleosomal DNA suggests their chromatin-assisted interaction. Pharmacological and genetic activation of NRF2 increases NRF2-p63 binding to enhancers and promotes keratinocyte proliferation, which involves the common NRF2-p63 target cyclin-dependent kinase 12. These results unravel a collaborative function of NRF2 and p63 in the control of epidermal renewal and suggest their combined activation as a strategy to promote repair of human skin and other stratified epithelia

    Commissioning of the MEG II tracker system

    Full text link
    The MEG experiment at the Paul Scherrer Institut (PSI) represents the state of the art in the search for the charged Lepton Flavour Violating (cLFV) μ+e+γ\mu^+ \rightarrow e^+ \gamma decay. With the phase 1, MEG set the new world best upper limit on the \mbox{BR}(\mu^+ \rightarrow e^+ \gamma) < 4.2 \times 10^{-13} (90% C.L.). With the phase 2, MEG II, the experiment aims at reaching a sensitivity enhancement of about one order of magnitude compared to the previous MEG result. The new Cylindrical Drift CHamber (CDCH) is a key detector for MEG II. CDCH is a low-mass single volume detector with high granularity: 9 layers of 192 drift cells, few mm wide, defined by 12000\sim 12000 wires in a stereo configuration for longitudinal hit localization. The filling gas mixture is Helium:Isobutane (90:10). The total radiation length is 1.5×1031.5 \times 10^{-3} \mbox{X}_0, thus minimizing the Multiple Coulomb Scattering (MCS) contribution and allowing for a single-hit resolution <120< 120 μ\mum and an angular and momentum resolutions of 6 mrad and 90 keV/c respectively. This article presents the CDCH commissioning activities at PSI after the wiring phase at INFN Lecce and the assembly phase at INFN Pisa. The endcaps preparation, HV tests and conditioning of the chamber are described, aiming at reaching the final stable working point. The integration into the MEG II experimental apparatus is described, in view of the first data taking with cosmic rays and μ+\mu^+ beam during the 2018 and 2019 engineering runs. The first gas gain results are also shown. A full engineering run with all the upgraded detectors and the complete DAQ electronics is expected to start in 2020, followed by three years of physics data taking.Comment: 10 pages, 12 figures, 1 table, proceeding at INSTR'20 conference, accepted for publication in JINS

    The contribution of staff call light response time to fall and injurious fall rates: an exploratory study in four US hospitals using archived hospital data

    Get PDF
    Abstract Background Fall prevention programs for hospitalized patients have had limited success, and the effect of programs on decreasing total falls and fall-related injuries is still inconclusive. This exploratory multi-hospital study examined the unique contribution of call light response time to predicting total fall rates and injurious fall rates in inpatient acute care settings. The conceptual model was based on Donabedian's framework of structure, process, and health-care outcomes. The covariates included the hospital, unit type, total nursing hours per patient-day (HPPDs), percentage of the total nursing HPPDs supplied by registered nurses, percentage of patients aged 65 years or older, average case mix index, percentage of patients with altered mental status, percentage of patients with hearing problems, and call light use rate per patient-day. Methods We analyzed data from 28 units from 4 Michigan hospitals, using archived data and chart reviews from January 2004 to May 2009. The patient care unit-month, defined as data aggregated by month for each patient care unit, was the unit of analysis (N = 1063). Hierarchical multiple regression analyses were used. Results Faster call light response time was associated with lower total fall and injurious fall rates. Units with a higher call light use rate had lower total fall and injurious fall rates. A higher percentage of productive nursing hours provided by registered nurses was associated with lower total fall and injurious fall rates. A higher percentage of patients with altered mental status was associated with a higher total fall rate but not a higher injurious fall rate. Units with a higher percentage of patients aged 65 years or older had lower injurious fall rates. Conclusions Faster call light response time appeared to contribute to lower total fall and injurious fall rates, after controlling for the covariates. For practical relevance, hospital and nursing executives should consider strategizing fall and injurious fall prevention efforts by aiming for a decrease in staff response time to call lights. Monitoring call light response time on a regular basis is recommended and could be incorporated into evidence-based practice guidelines for fall prevention.http://deepblue.lib.umich.edu/bitstream/2027.42/112579/1/12913_2011_Article_2004.pd

    The Drift Chamber of the MEG II experiment

    Full text link
    The MEG experiment at the Paul Scherrer Institut searches for the charged-Lepton-Flavor-Violating mu+ -> e+ gamma decay. MEG has already set the world best upper limit on the branching ratio: BR<4.2x10^-13 @ 90% C.l. An upgrade (MEG II) of the whole detector has been approved to obtain a substantial increase of sensitivity. Currently MEG II is completing the upgrade of the various detectors, an engineering run and a pre-commissioning run were carried out during 2018 and 2019. The new positron tracker is a unique volume, ultra-light He based cylindrical drift chamber (CDCH), with high granularity: 9 layers of 192 square drift cells, ~6-9 mm wide, consist of ~12000 wires in a full stereo configuration. To ensure the electrostatic stability of the drift cells a new wiring strategy should be developed due to the high wire density (12 wires/cm^2 ), the stringent precision requirements on the wire position and uniformity of the wire mechanical tension (better than 0.5 g) The basic idea is to create multiwire frames, by soldering a set of (16 or 32) wires on 40 um thick custom wire-PCBs. Multiwire frames and PEEK spacers are overlapped alternately along the radius, to set the proper cell width, in each of the twelve sectors defined by the spokes of the rudder wheel shaped end-plates. Despite to the conceptual simplicity of the assembling strategies, the building of the multiwire frames, with the set requirements, imposes a use of an automatic wiring system. The MEG II CDCH is the first cylindrical drift chamber ever designed and built in a modular way and it will allow to track positrons, with a momentum greater than 45 MeV/c, with high efficiency by using a very small amount of material, 1.5x10^-3 X0 . We describe the CDCH design and construction, the wiring phase at INFN-Lecce, the choice of the wires, their mechanical properties, the assembly and sealing at INFN-Pisa and the commissioning.Comment: 11 pages, 8 figures, 1 table, proceeding at INSTR'20 conference, accepted for publication in JINS

    On the Theory of Vibronic Superradiance

    Full text link
    The Dicke superradiance on vibronic transitions of impurity crystals is considered. It is shown that parameters of the superradiance (duration and intensity of the superradiance pulse and delay times) on each vibronic transition depend on the strength of coupling of electronic states with the intramolecular impurity vibration (responsible for the vibronic structure of the optical spectrum in the form of vibrational replicas of the pure electronic line) and on the crystal temperature through the Debye-Waller factor of the lattice vibrations. Theoretical estimates of the ratios of the time delays, as well as of the superradiance pulse intensities for different vibronic transitions well agree with the results of experimental observations of two-color superradiance in the polar dielectric KCl:O2-. In addition, the theory describes qualitatively correctly the critical temperature dependence of the superradiance effect.Comment: 8 pages, 1 figur

    Shedding light on X17: community report

    Get PDF
    The workshop “Shedding light on X17” brings together scientists looking for the existence of a possible new light particle, often referred to as X17. This hypothetical particle can explain the resonant structure observed at ∼ 17 MeV in the invariant mass of electron-positron pairs, produced after excitation of nuclei such as 8Be and 4He by means of proton beams at the Atomki Laboratory in Debrecen. The purpose of the workshop is to discuss implications of this anomaly, in particular theoretical interpretations as well as present and future experiments aiming at confirming the result and/or at providing experimental evidence for its interpretation

    Loss of the Wnt/β-catenin pathway in microglia of the developing brain drives pro-inflammatory activation leading to white matter injury

    Get PDF
    Microglia-mediated neuroinflammation is key in numerous brain diseases including encephalopathy of the preterm born infant. Microglia of the still-developing brain have unique properties but little is known of how they regulate their inflammatory activation. This is important information as every year 9 million preterm born infants acquire persisting neurological injuries associated with encephalopathy and we lack strategies to prevent and treat these injuries. Our study of activation state regulators in immature brain microglia found a robust down-regulation of Wnt/β-catenin pathway receptors, ligands and intracellular signalling members in pro-inflammatory microglia. We undertook our studies initially in a mouse model of microglia-mediated encephalopathy including the clinical hallmarks of oligodendrocyte injury and hypomyelination. We purified microglia from this model and applied a genome-wide transcriptomics analysis validated with quantitative profiling. We then verified that down-regulation of the Wnt/β-catenin signalling cascade is sufficient and necessary to drive microglia into an oligodendrocyte-damaging phenotype using multiple pharmacological and genetic approaches in vitro and in vivo in mice and in humans and zebrafish. We also demonstrated that genomic variance in the WNT/β-catenin pathway is associated with the anatomical connectivity phenotype of the human preterm born infant. This integrated analysis of genomics and connectivity, as a surrogate for oligodendrocyte function/myelination, is agnostic to cell type. However, this data indicates that the WNT pathway is relevant to human brain injury and specifically that WNT variants may be useful clinically for injury stratification and prognosis. Finally, we performed a translational experiment using a BBB penetrant microglia-specific targeting 3DNA nanocarrier to deliver a Wnt agonist specifically and directly to microglia in vivo. Increasing the activity of the Wnt/β-catenin pathway specifically in microglia in our model of microglia-mediated encephalopathy was able to reduce microglial pro-inflammatory activation, prevent the typical hypomyelination and also prevent the long-term memory deficit associated with this hypomyelination. In summary, the canonical Wnt/β-catenin pathway regulates microglial activation and up-regulation of this pathway could be a viable neurotherapeutic strategy

    Shedding light on X17: community report

    Get PDF
    The workshop “Shedding light on X17” brings together scientists looking for the existence of a possible new light particle, often referred to as X17. This hypothetical particle can explain the resonant structure observed at ∼ 17 MeV in the invariant mass of electron-positron pairs, produced after excitation of nuclei such as 8Be and 4He by means of proton beams at the Atomki Laboratory in Debrecen. The purpose of the workshop is to discuss implications of this anomaly, in particular theoretical interpretations as well as present and future experiments aiming at confirming the result and/or at providing experimental evidence for its interpretation
    corecore