4,466 research outputs found

    Polarisation dependence of magnetic Bragg scattering in YMn2_2O5_5

    Full text link
    The polarisation dependence of the intensity of elastic magnetic scattering from \ymno\ single crystals has been measured at 25 K in magnetic fields between 1 and 9 T. A significant polarisation dependence was observed in the intensities of magnetic satellite reflections, propagation vector \pv=0.5,0,0.25 measured with both the [100] and [010] axes parallel to the common polarisation and applied field direction. The intensity asymmetries AA observed in sets of orthorhombicly equivalent reflections show systematic relationships which allow the phase relationship between different components of their magnetic interaction vectors to be determined. They fix the orientation relationships between the small yy and zz moments on the \mnfp\ and \mntp\ sub-lattices and lend support to the structure reported by Kim et al. It was found that that A(hkl)≠A(hˉkˉlˉ)A(hkl)\ne A(\bar h\bar k\bar l) which suggests that there is a small modulation of the nuclear structure which has the same wave-vector as the magnetic modulation leading to a small nuclear structure factor for the satellite reflections. The differences A(hkl)−A(hˉkˉlˉ)A(hkl)- A(\bar h\bar k\bar l) observed indicate shifts in the atomic positions of order 0.005 \AA

    Keck Spectroscopy of Two Young Globular Clusters in the Merger Remnant NGC 3921

    Full text link
    Low-resolution UV-to-visual spectra of two candidate globular clusters in the merger remnant NGC 3921 are presented. These two clusters of apparent magnitude V = 22.2 (Mv = -12.5) lie at projected distances of ~5 kpc from the center and move with halo-type radial velocities relative to the local galaxy background. Their spectra show strong Balmer absorption lines indicative of main-sequence turnoffs dominated by A-type stars. Comparisons with model-cluster spectra computed by Bruzual & Charlot and others yield cluster ages in the range of 200-530 Myr, and metallicities about solar to within a factor of three. Given their small half-light radii (Reff < 5 pc) and ages corresponding to ~100 core- crossing times, these clusters are gravitationally bound and, hence, indeed young globulars. Assuming that they had Chabrier-type initial mass functions, their estimated current masses are 2.3(+-0.1)x10^6 Msun and 1.5(+-0.1)x10^6 Msun, respectively, or roughly half the mass of omegaCen. Since NGC 3921 itself shows many signs of being a 0.7(+-0.3) Gyr old protoelliptical, these two young globulars of roughly solar metallicity and their many counterparts observed with the Hubble Space Telescope provide supporting evidence that, in the process of forming elliptical-like remnants, major mergers of gas-rich disks can also increase the number of metal-rich globular clusters. (Abridged)Comment: 22 pages, 6 figures, accepted for publication in AJ, July 200

    Inter-molecular structure factors of macromolecules in solution: integral equation results

    Full text link
    The inter-molecular structure of semidilute polymer solutions is studied theoretically. The low density limit of a generalized Ornstein-Zernicke integral equation approach to polymeric liquids is considered. Scaling laws for the dilute-to-semidilute crossover of random phase (RPA) like structure are derived for the inter-molecular structure factor on large distances when inter-molecular excluded volume is incorporated at the microscopic level. This leads to a non-linear equation for the excluded volume interaction parameter. For macromolecular size-mass scaling exponents, ν\nu, above a spatial-dimension dependent value, νc=2/d\nu_c=2/d, mean field like density scaling is recovered, but for ν<νc\nu<\nu_c the density scaling becomes non-trivial in agreement with field theoretic results and justifying phenomenological extensions of RPA. The structure of the polymer mesh in semidilute solutions is discussed in detail and comparisons with large scale Monte Carlo simulations are added. Finally a new possibility to determine the correction to scaling exponent ω12\omega_{12} is suggested.Comment: 11 pages, 5 figures; to be published in Phys. Rev. E (1999

    An integral equation approach to effective interactions between polymers in solution

    Full text link
    We use the thread model for linear chains of interacting monomers, and the ``polymer reference interaction site model'' (PRISM) formalism to determine the monomer-monomer pair correlation function hmm(r)h_{mm}(r) for dilute and semi-dilute polymer solutions, over a range of temperatures from very high (where the chains behave as self-avoiding walks) to below the θ\theta temperature, where phase separation sets in. An inversion procedure, based on the HNC integral equation, is used to extract the effective pair potential between ``average'' monomers on different chains. An accurate relation between hmm(r)h_{mm}(r), hcc(r)h_{cc}(r) [the pair correlation function between the polymer centers of mass (c.m.)], and the intramolecular form factors is then used to determine hcc(r)h_{cc}(r), and subsequently extract the effective c.m.-c.m. pair potential vcc(r)v_{cc}(r) by a similar inversion procedure. vcc(r)v_{cc}(r) depends on temperature and polymer concentration, and the predicted variations are in reasonable agreement with recent simulation data, except at very high temperatures, and below the θ\theta temperature.Comment: 13 pages, 13 figures, revtex ; revised versio

    Cooperative Dynamics in Unentangled Polymer Fluids

    Full text link
    We present a Generalized Langevin Equation for the dynamics of interacting semiflexible polymer chains, undergoing slow cooperative dynamics. The calculated Gaussian intermolecular center-of-mass and monomer potentials, wich enter the GLE, are in quantitative agreement with computer simulation data. The experimentally observed, short-time subdiffusive regime of the polymer mean-square displacements, emerges here from the competition between the intramolecular and the intermolecular mean-force potentials.Comment: 9 pages, latex, 3 figure

    Artificial Brains and Hybrid Minds

    Get PDF
    The paper develops two related thought experiments exploring variations on an ‘animat’ theme. Animats are hybrid devices with both artificial and biological components. Traditionally, ‘components’ have been construed in concrete terms, as physical parts or constituent material structures. Many fascinating issues arise within this context of hybrid physical organization. However, within the context of functional/computational theories of mentality, demarcations based purely on material structure are unduly narrow. It is abstract functional structure which does the key work in characterizing the respective ‘components’ of thinking systems, while the ‘stuff’ of material implementation is of secondary importance. Thus the paper extends the received animat paradigm, and investigates some intriguing consequences of expanding the conception of bio-machine hybrids to include abstract functional and semantic structure. In particular, the thought experiments consider cases of mind-machine merger where there is no physical Brain-Machine Interface: indeed, the material human body and brain have been removed from the picture altogether. The first experiment illustrates some intrinsic theoretical difficulties in attempting to replicate the human mind in an alternative material medium, while the second reveals some deep conceptual problems in attempting to create a form of truly Artificial General Intelligence

    Structure of Colloid-Polymer Suspensions

    Full text link
    We discuss structural correlations in mixtures of free polymer and colloidal particles based on a microscopic, 2-component liquid state integral equation theory. Whereas in the case of polymers much smaller than the spherical particles the relevant polymer degree of freedom is the center of mass, for polymers larger than the (nano-) particles conformational rearrangements need to be considered. They have the important consequence that the polymer depletion layer exhibits two widely different length scales, one of the order of the particle radius, the other of the order of the polymer radius or the polymer density screening length in dilute or semidilute concentrations, respectively. Their consequences on phase stability and structural correlations are discussed extensively.Comment: 37 pages, 17 figures; topical feature articl

    Dynamical Evolution of Globular Cluster Systems formed in Galaxy Mergers: Deep HST/ACS Imaging of Old and Intermediate-Age Globular Clusters in NGC 3610

    Get PDF
    (ABRIDGED) The ACS camera on board the Hubble Space Telescope has been used to obtain deep images of the giant elliptical galaxy NGC 3610, a well-established dissipative galaxy merger remnant. These observations supersede previous WFPC2 images which revealed the presence of a population of metal-rich globular clusters (GCs) of intermediate age (~1.5-4 Gyr). We detect a total of 580 GC candidates, 46% more than from the previous WFPC2 images. The new photometry strengthens the significance of the previously found bimodality of the color distribution of GCs. Peak colors in V-I are 0.93 +/-0.01 and 1.09 +/- 0.01 for the blue and red subpopulations, respectively. The luminosity function (LF) of the inner 50% of the metal-rich (`red') population of GCs differs markedly from that of the outer 50%. In particular, the LF of the inner 50% of the red GCs shows a flattening consistent with a turnover that is about 1.0 mag fainter than the turnover of the blue GC LF. This is consistent with predictions of recent models of GC disruption for the age range mentioned above and for metallicities that are consistent with the peak color of the red GCs as predicted by population synthesis models. We determine the specific frequency of GCs in NGC 3610 and find a present-day value of S_N = 1.4 +/- 0.6. We estimate that this value will increase to S_N = 3.8 +/- 1.7 at an age of 10 Gyr, which is consistent with typical S_N values for `normal' ellipticals. Our findings constitute further evidence in support of the notion that metal-rich GC populations formed during major mergers involving gas-rich galaxies can evolve dynamically (through disruption processes) into the red, metal-rich GC populations that are ubiquitous in `normal' giant ellipticals.Comment: 15 pages, 14 figures, 4 tables. Accepted for publication in The Astronomical Journal. Figure 6 somewhat degraded to adhere to astro-ph rule

    Evolution of monolayer terrace topography on (100) GaAs annealed under an arsine/hydrogen ambient

    Get PDF
    The topographical evolution of the (100) GaAs surface annealed under an arsine/hydrogen ambient is studied by in situ orientation-resolved light scattering and ex situ atomic force microscopy (AFM). The light scattering system provides real-time monitoring of the magnitude and crystal orientation of topographical features of 0.3 mum scale. The AFM images of the GaAs surface, quenched at various annealing temperatures, vividly depict the randomly oriented high density monolayer steps evolving into an atomically smooth terracelike structure
    • …
    corecore