952 research outputs found

    Cordycepin in Schizosaccharomyces pombe: effects on the wild type and phenotypes of mutants resistant to the drug

    Get PDF
    The adenosine analogue cordycepin (3′-deoxyadenosine) inhibits growth and causes aberrant cell morphology in the fission yeast, Schizosaccharomyces pombe. Exogenously added thiamine, the pyrimidine moiety of the thiamine molecule, and adenine alleviate its growth-disturbing effect. At concentrations that do not inhibit growth, the drug reduces mating and sporulation and causes a decrease in the mRNA level of gene ste11 and the ste11-dependent gene, mei2. The mating- and sporulation-inhibiting effect of cordycepin is overcome by adenine. A mutant disrupted for the ado1 gene encoding adenosine kinase exhibits a cordycepin-resistant and methionine-sensitive phenotype, excretes adenosine into the medium and mates and sporulates poorly in the presence of adenine. A S. pombe mutant containing a frameshift mutation at the beginning of the carboxy-terminal half of gene ufd1 (the Saccharomyces cerevisiae UFD1 homologue) is cordycepin-resistant and sterile. Strains disrupted for the ufd1 gene only form microcolonie

    Dependence of the Martian radiation environment on atmospheric depth: Modeling and measurement

    Get PDF
    The energetic particle environment on the Martian surface is influenced by solar and heliospheric modulation and changes in the local atmospheric pressure (or column depth). The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory rover Curiosity on the surface of Mars has been measuring this effect for over four Earth years (about two Martian years). The anticorrelation between the recorded surface Galactic Cosmic Ray-induced dose rates and pressure changes has been investigated by Rafkin et al. (2014) and the long-term solar modulation has also been empirically analyzed and modeled by Guo et al. (2015). This paper employs the newly updated HZETRN2015 code to model the Martian atmospheric shielding effect on the accumulated dose rates and the change of this effect under different solar modulation and atmospheric conditions. The modeled results are compared with the most up-to-date (from 14 August 2012 to 29 June 2016) observations of the RAD instrument on the surface of Mars. Both model and measurements agree reasonably well and show the atmospheric shielding effect under weak solar modulation conditions and the decline of this effect as solar modulation becomes stronger. This result is important for better risk estimations of future human explorations to Mars under different heliospheric and Martian atmospheric conditions

    Improved Constraints on the Preferential Heating and Acceleration of Oxygen Ions in the Extended Solar Corona

    Full text link
    We present a detailed analysis of oxygen ion velocity distributions in the extended solar corona, based on observations made with the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. Polar coronal holes at solar minimum are known to exhibit broad line widths and unusual intensity ratios of the O VI 1032, 1037 emission line doublet. The traditional interpretation of these features has been that oxygen ions have a strong temperature anisotropy, with the temperature perpendicular to the magnetic field being much larger than the temperature parallel to the field. However, recent work by Raouafi and Solanki suggested that it may be possible to model the observations using an isotropic velocity distribution. In this paper we analyze an expanded data set to show that the original interpretation of an anisotropic distribution is the only one that is fully consistent with the observations. It is necessary to search the full range of ion plasma parameters to determine the values with the highest probability of agreement with the UVCS data. The derived ion outflow speeds and perpendicular kinetic temperatures are consistent with earlier results, and there continues to be strong evidence for preferential ion heating and acceleration with respect to hydrogen. At heliocentric heights above 2.1 solar radii, every UVCS data point is more consistent with an anisotropic distribution than with an isotropic distribution. At heights above 3 solar radii, the exact probability of isotropy depends on the electron density chosen to simulate the line-of-sight distribution of O VI emissivity. (abridged abstract)Comment: 19 pages (emulateapj style), 13 figures, ApJ, in press (v. 679; May 20, 2008

    Gossamer roadmap technology reference study for a solar polar mission

    Get PDF
    A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100 – 125 m to deliver a ‘sufficient value’ minimum science payload, and that a 2. 5μm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass

    Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit

    Full text link
    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) Curiosity rover, has been measuring ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or stream/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since September 2014. The penetrating particle flux channels in the Solar Energetic Particle (SEP) instrument onboard MAVEN can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying interplanetary CME (ICME) propagation and SIR evolution through the inner heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be mostly attributed to the energy-dependent modulation of the GCR particles by both the pass-by ICMEs/SIRs and the Martian atmosphere

    Modeling the variations of Dose Rate measured by RAD during the first MSL Martian year: 2012-2014

    Get PDF
    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) rover Curiosity, measures the {energy spectra} of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic ray (GCR) induced surface radiation dose concurrently: [a] short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, [b] long-term seasonal pressure changes in the Martian atmosphere, and [c] the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activity and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analysed and fitted to empirical models which quantitatively demonstrate} how the long-term influences ([b] and [c]) are related to the measured dose rates. {Correspondingly we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment
    • …
    corecore