6,286 research outputs found
Ultra high bypass Nacelle aerodynamics inlet flow-through high angle of attack distortion test
A flow-through inlet test program was conducted to evaluate inlet test methods and determine the impact of the fan on inlet separation when operating at large angles of attack. A total of 16 model configurations of approximately 1/6 scale were tested. A comparison of these flow-through results with powered data indicates the presence of the fan increased separation operation 3 degrees to 4 degrees over the flow through inlet. Rods and screens located at the fan face station, that redistribute the flow, achieved simulation of the powered-fan results for separation angle of attack. Concepts to reduce inlet distortion and increase angle of attack capability were also evaluated. Vortex generators located on the inlet surface increased inlet angle of attack capability up to 2 degrees and reduced inlet distortion in the separated region. Finally, a method of simulating the fan/inlet aerodynamic interaction using blockage sizing method has been defined. With this method, a static blockage device used with a flow-through model will approximate the same inlet onset of separation angle of attack and distortion pattern that would be obtained with an inlet model containing a powered fan
3D shape based reconstruction of experimental data in Diffuse Optical Tomography
Diffuse optical tomography (DOT) aims at recovering three-dimensional images of absorption and scattering parameters inside diffusive body based on small number of transmission measurements at the boundary of the body. This image reconstruction problem is known to be an ill-posed inverse problem, which requires use of prior information for successful reconstruction. We present a shape based method for DOT, where we assume a priori that the unknown body consist of disjoint subdomains with different optical properties. We utilize spherical harmonics expansion to parameterize the reconstruction problem with respect to the subdomain boundaries, and introduce a finite element (FEM) based algorithm that uses a novel 3D mesh subdivision technique to describe the mapping from spherical harmonics coefficients to the 3D absorption and scattering distributions inside a unstructured volumetric FEM mesh. We evaluate the shape based method by reconstructing experimental DOT data, from a cylindrical phantom with one inclusion with high absorption and one with high scattering. The reconstruction was monitored, and we found a 87% reduction in the Hausdorff measure between targets and reconstructed inclusions, 96% success in recovering the location of the centers of the inclusions and 87% success in average in the recovery for the volumes
Spin relaxation and coherence times for electrons at the Si/SiO2 interface
While electron spins in silicon heterostructures make attractive qubits,
little is known about the coherence of electrons at the Si/SiO2 interface. We
report spin relaxation (T1) and coherence (T2) times for mobile electrons and
natural quantum dots at a 28Si/SiO2 interface. Mobile electrons have short T1
and T2 of 0.3 us at 5 K. In line with predictions, confining electrons and
cooling increases T1 to 0.8 ms at 350 mK. In contrast, T2 for quantum dots is
around 10 us at 350 mK, increasing to 30 us when the dot density is reduced by
a factor of two. The quantum dot T2 is shorter than T1, indicating that T2 is
not controlled by T1 at 350 mK but is instead limited by an extrinsic
mechanism. The evidence suggests that this extrinsic mechanism is an exchange
interaction between electrons in neighboring dots.Comment: Extended with more experiments and rewritten. 6 pages, 5 figures, to
be submitted to Phys. Rev.
Tunable multi-photon Rabi oscillations in an electronic spin system
We report on multi-photon Rabi oscillations and controlled tuning of a
multi-level system at room temperature (S=5/2 for Mn2+:MgO) in and out of a
quasi-harmonic level configuration. The anisotropy is much smaller than the
Zeeman splittings, such as the six level scheme shows only a small deviation
from an equidistant diagram. This allows us to tune the spin dynamics by either
compensating the cubic anisotropy with a precise static field orientation, or
by microwave field intensity. Using the rotating frame approximation, the
experiments are very well explained by both an analytical model and a
generalized numerical model. The calculated multi-photon Rabi frequencies are
in excellent agreement with the experimental data
Basis mapping methods for forward and inverse problems
This paper describes a novel method for mapping between basis representation of a field variable over a domain in the context of numerical modelling and inverse problems. In the numerical solution of inverse problems, a continuous scalar or vector field over a domain may be represented in different finite-dimensional basis approximations, such as an unstructured mesh basis for the numerical solution of the forward problem, and a regular grid basis for the representation of the solution of the inverse problem. Mapping between the basis representations is generally lossy, and the objective of the mapping procedure is to minimise the errors incurred. We present in this paper a novel mapping mechanism that is based on a minimisation of the L2 or H1 norm of the difference between the two basis representations. We provide examples of mapping in 2D and 3D problems, between an unstructured mesh basis representative of an FEM approximation, and different types of structured basis including piecewise constant and linear pixel basis, and blob basis as a representation of the inverse basis. A comparison with results from a simple sampling-based mapping algorithm shows the superior performance of the method proposed here
Universal Control of Nuclear Spins Via Anisotropic Hyperfine Interactions
We show that nuclear spin subsystems can be completely controlled via
microwave irradiation of resolved anisotropic hyperfine interactions with a
nearby electron spin. Such indirect addressing of the nuclear spins via
coupling to an electron allows us to create nuclear spin gates whose
operational time is significantly faster than conventional direct addressing
methods. We experimentally demonstrate the feasibility of this method on a
solid-state ensemble system consisting of one electron and one nuclear spin.Comment: RevTeX4, 8 pages, 8 figure
Electrical Detection of Coherent Nuclear Spin Oscillations in Phosphorus-Doped Silicon Using Pulsed ENDOR
We demonstrate the electrical detection of pulsed X-band Electron Nuclear
Double Resonance (ENDOR) in phosphorus-doped silicon at 5\,K. A pulse sequence
analogous to Davies ENDOR in conventional electron spin resonance is used to
measure the nuclear spin transition frequencies of the P nuclear spins,
where the P electron spins are detected electrically via spin-dependent
transitions through Si/SiO interface states, thus not relying on a
polarization of the electron spin system. In addition, the electrical detection
of coherent nuclear spin oscillations is shown, demonstrating the feasibility
to electrically read out the spin states of possible nuclear spin qubits.Comment: 5 pages, 3 figure
Coherent manipulation of electron spins up to ambient temperatures in Cr(S=1/2) doped KNbO
We report coherent spin manipulation on Cr (\emph{S} = 1/2, \emph{I} =
0) doped KNbO, which constitutes a dilute two-level model relevant for
use as a spin qubit. Rabi oscillations are observed for the first time in a
spin system based on transition metal oxides up to room temperature. At liquid
helium temperature the phase coherence relaxation time \emph{} reaches
s and, with a Rabi frequency of 20 MHz, yields a single qubit
figure of merit \emph{} of about 500. This shows that a diluted ensemble
of Cr (\emph{S} = 1/2) doped KNbO is a potential candidate for
solid-state quantum information processing.Comment: 4 page
Quenching Spin Decoherence in Diamond through Spin Bath Polarization
We experimentally demonstrate that the decoherence of a spin by a spin bath
can be completely eliminated by fully polarizing the spin bath. We use electron
paramagnetic resonance at 240 gigahertz and 8 Tesla to study the spin coherence
time of nitrogen-vacancy centers and nitrogen impurities in diamond from
room temperature down to 1.3 K. A sharp increase of is observed below the
Zeeman energy (11.5 K). The data are well described by a suppression of the
flip-flop induced spin bath fluctuations due to thermal spin polarization.
saturates at below 2 K, where the spin bath polarization
is 99.4 %.Comment: 5 pages and 3 figure
- …