6,611 research outputs found

    Ultra high bypass Nacelle aerodynamics inlet flow-through high angle of attack distortion test

    Get PDF
    A flow-through inlet test program was conducted to evaluate inlet test methods and determine the impact of the fan on inlet separation when operating at large angles of attack. A total of 16 model configurations of approximately 1/6 scale were tested. A comparison of these flow-through results with powered data indicates the presence of the fan increased separation operation 3 degrees to 4 degrees over the flow through inlet. Rods and screens located at the fan face station, that redistribute the flow, achieved simulation of the powered-fan results for separation angle of attack. Concepts to reduce inlet distortion and increase angle of attack capability were also evaluated. Vortex generators located on the inlet surface increased inlet angle of attack capability up to 2 degrees and reduced inlet distortion in the separated region. Finally, a method of simulating the fan/inlet aerodynamic interaction using blockage sizing method has been defined. With this method, a static blockage device used with a flow-through model will approximate the same inlet onset of separation angle of attack and distortion pattern that would be obtained with an inlet model containing a powered fan

    Feasibility study of an optical radiometer for determining the composition of the Mars atmosphere from shock layer radiation during entry, volume II Final report

    Get PDF
    Optical radiometer feasibility study for determining composition of Mars atmosphere from shock layer radiation during entry - instrumentatio

    Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Get PDF
    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling

    Universal Control of Nuclear Spins Via Anisotropic Hyperfine Interactions

    Full text link
    We show that nuclear spin subsystems can be completely controlled via microwave irradiation of resolved anisotropic hyperfine interactions with a nearby electron spin. Such indirect addressing of the nuclear spins via coupling to an electron allows us to create nuclear spin gates whose operational time is significantly faster than conventional direct addressing methods. We experimentally demonstrate the feasibility of this method on a solid-state ensemble system consisting of one electron and one nuclear spin.Comment: RevTeX4, 8 pages, 8 figure

    Sea ice-atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Get PDF
    The application of multi-spectral satellite data to estimate polar surface energy fluxes is addressed. To what accuracy and over which geographic areas large scale energy budgets can be estimated are investigated based upon a combination of available remote sensing and climatological data sets. The general approach was to: (1) formulate parameterization schemes for the appropriate sea ice energy budget terms based upon the remotely sensed and/or in-situ data sets; (2) conduct sensitivity analyses using as input both natural variability (observed data in regional case studies) and theoretical variability based upon energy flux model concepts; (3) assess the applicability of these parameterization schemes to both regional and basin wide energy balance estimates using remote sensing data sets; and (4) assemble multi-spectral, multi-sensor data sets for at least two regions of the Arctic Basin and possibly one region of the Antarctic. The type of data needed for a basin-wide assessment is described and the temporal coverage of these data sets are determined by data availability and need as defined by parameterization scheme. The titles of the subjects are as follows: (1) Heat flux calculations from SSM/I and LANDSAT data in the Bering Sea; (2) Energy flux estimation using passive microwave data; (3) Fetch and stability sensitivity estimates of turbulent heat flux; and (4) Surface temperature algorithm

    Sea ice - atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Get PDF
    In the past six months, work has continued on energy flux sensitivity studies, ice surface temperature retrievals, corrections to Advanced Very High Resolution Radiometer (AVHRR) thermal infrared data, modelling of cloud fraction retrievals, and radiation climatologies. We tentatively conclude that the SSM/I may not provide accurate enough estimates of ice concentration and type to improve our shorter term energy flux estimates. SSM/I derived parameters may still be applicable in longer term climatological flux characterizations. We hold promise for a system coupling observation to a ice deformation model. Such a model may provide information on ice distribution which can be used in energy flux calculations. Considerable variation was found in modelled energy flux estimates when bulk transfer coefficients are modulated by lead fetch. It is still unclear what the optimum formulation is and this will be the subject of further work. Data sets for ice surface temperature retrievals were assembled and preliminary data analysis was started. Finally, construction of a conceptual framework for further modelling of the Arctic radiation flux climatology was started

    Measurement of spin-lattice relaxation times with longitudinal detection

    Get PDF
    New experimental schemes to measure spin-lattice relaxation times T1 on the basis of inversion-recovery and saturation-recovery experiments with longitudinal detection are introduced. With this approach, paramagnetic species with T1 values as short as 20 ns can be measured. Possibilities to reduce unwanted signals and instrumental artifacts are analyzed. An experiment where the signal is induced directly by the time-dependent M2 magnetization is also proposed. Experimental results for organic radicals and defect centers are presented and compared with data obtained with conventional techniques, and a metal complex at 250 K is analyzed where it is very difficult to get information about relaxation times with established methods because of fast spin-spin relaxatio

    Coherent manipulation of electron spins up to ambient temperatures in Cr5+^{5+}(S=1/2) doped K3_3NbO8_8

    Full text link
    We report coherent spin manipulation on Cr5+^{5+} (\emph{S} = 1/2, \emph{I} = 0) doped K3_3NbO8_8, which constitutes a dilute two-level model relevant for use as a spin qubit. Rabi oscillations are observed for the first time in a spin system based on transition metal oxides up to room temperature. At liquid helium temperature the phase coherence relaxation time \emph{T2T_2} reaches ∼10\sim 10 μ\mus and, with a Rabi frequency of 20 MHz, yields a single qubit figure of merit \emph{QMQ_M} of about 500. This shows that a diluted ensemble of Cr5+^{5+} (\emph{S} = 1/2) doped K3_3NbO8_8 is a potential candidate for solid-state quantum information processing.Comment: 4 page

    Direct Observation of Quantum Coherence in Single-Molecule Magnets

    Get PDF
    Direct evidence of quantum coherence in a single-molecule magnet in frozen solution is reported with coherence times as long as T2 = 630 ns. We can strongly increase the coherence time by modifying the matrix in which the single-molecule magnets are embedded. The electron spins are coupled to the proton nuclear spins of both the molecule itself and interestingly, also to those of the solvent. The clear observation of Rabi oscillations indicates that we can manipulate the spin coherently, an essential prerequisite for performing quantum computations.Comment: 5 Pages, 4 Figures, final version published in PR
    • …
    corecore