162 research outputs found

    Population III star formation in a Lambda CDM universe, I: The effect of formation redshift and environment on protostellar accretion rate

    Get PDF
    (abridged) We perform 12 extremely high resolution adaptive mesh refinement cosmological hydrodynamic simulations of Population III star formation in a Lambda CDM universe, varying the box size and large-scale structure, to understand systematic effects in the formation of primordial protostellar cores. We find results that are qualitatively similar to those observed previously. We observe that the threshold halo mass for formation of a Population III protostar does not evolve significantly with time in the redshift range studied (33 > z > 19) but exhibits substantial scatter due to different halo assembly histories: Halos which assembled more slowly develop cooling cores at lower mass than those that assemble more rapidly, in agreement with Yoshida et al. (2003). We do, however, observe significant evolution in the accretion rates of Population III protostars with redshift, with objects that form later having higher maximum accretion rates, with a variation of two orders of magnitude (10^-4 - 10^-2 Msolar/year). This can be explained by considering the evolving virial properties of the halos with redshift and the physics of molecular hydrogen formation at low densities. Our result implies that the mass distribution of Population III stars inferred from their accretion rates may be broader than previously thought, and may evolve with redshift. Finally, we observe that our collapsing protostellar cloud cores do not fragment, consistent with previous results, which suggests that Population III stars which form in halos of mass 10^5 - 10^6 Msun always form in isolation.Comment: Accepted by The Astrophysical Journal. Some minor changes. 65 pages, 3 tables, 21 figures (3 color). To appear in January 1, 2007 issu

    Headless Horseman: Adversarial Attacks on Transfer Learning Models

    Full text link
    Transfer learning facilitates the training of task-specific classifiers using pre-trained models as feature extractors. We present a family of transferable adversarial attacks against such classifiers, generated without access to the classification head; we call these \emph{headless attacks}. We first demonstrate successful transfer attacks against a victim network using \textit{only} its feature extractor. This motivates the introduction of a label-blind adversarial attack. This transfer attack method does not require any information about the class-label space of the victim. Our attack lowers the accuracy of a ResNet18 trained on CIFAR10 by over 40\%.Comment: 5 pages, 2 figures. Accepted in ICASSP 2020. Code available on https://github.com/zhuchen03/headless-attack.gi

    Linking goniometer measurements to hyperspectral and multi-sensor imagery for retrieval of beach properties and coastal characterization

    Get PDF
    In June 2011, a multi-sensor airborne remote sensing campaign was flown at the Virginia Coast Reserve Long Term Ecological Research site with coordinated ground and water calibration and validation (cal/val) measurements. Remote sensing imagery acquired during the ten day exercise included hyperspectral imagery (CASI-1500), topographic LiDAR, and thermal infra-red imagery, all simultaneously from the same aircraft. Airborne synthetic aperture radar (SAR) data acquisition for a smaller subset of sites occurred in September 2011 (VCR\u2711). Focus areas for VCR\u2711 were properties of beaches and tidal flats and barrier island vegetation and, in the water column, shallow water bathymetry. On land, cal/val emphasized tidal flat and beach grain size distributions, density, moisture content, and other geotechnical properties such as shear and bearing strength (dynamic deflection modulus), which were related to hyperspectral BRDF measurements taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). This builds on our earlier work at this site in 2007 related to beach properties and shallow water bathymetry. A priority for VCR\u2711 was to collect and model relationships between hyperspectral imagery, acquired from the aircraft at a variety of different phase angles, and geotechnical properties of beaches and tidal flats. One aspect of this effort was a demonstration that sand density differences are observable and consistent in reflectance spectra from GOPHER data, in CASI hyperspectral imagery, as well as in hyperspectral goniometer measurements conducted in our laboratory after VCR\u2711

    Un-renormalized Classical Electromagnetism

    Full text link
    This paper follows in the tradition of direct-action versions of electromagnetism having the aim of avoiding a balance of infinities wherein a mechanical mass offsets an infinite electromagnetic mass so as to arrive at a finite observed value. Given that, in this respect the direct-action approached ultimately failed because its initial exclusion of self-action was found to be untenable in the relativistic domain, this paper continues the tradition considering instead a version of electromagnetism wherein mechanical action is excluded and self-action is retained. It is shown that the resulting theory is effectively interacting due to the presence of infinite forces. A vehicle for the investigation is a pair of classical point charges in a positronium-like arrangement for which the orbits are found to be self-sustaining and naturally quantized
    • …
    corecore