22 research outputs found

    Spontaneous polarization in NaNbO3_{3} film on NdGaO3_{3} and DyScO3_{3} substrates

    Full text link
    Pure NaNbO3_{3} is an antiferroelectric material at room temperature that irreversibly transforms to a ferroelectric polar state when subjected to an external electrical field or lattice strain. Experimentally, it has been observed that NaNbO3_{3} films grown on NdGaO3_{3} exhibit an electrical polarization along the [001]PC_{\mathrm{PC}} direction, whereas films on DyScO3_{3} substrates exhibit a polarization along the [011]PC_{\mathrm{PC}} direction. These effects have been attributed to the realization of different lattice symmetries in the films due to the incorporation of lattice strain imposed by the use of oxide substrates with different lattice parameters. However, the underlying atomistic mechanisms of the resulting phase symmetry in the films are hardly clear, given that NaNbO3_{3} features a diverse and complex phase diagram. In turn, these also impede a straightforward tailoring and optimization of the resulting macroscopic properties on different substrates. To clarify this issue, we perform all-electron first-principles calculations for several potential NaNbO3_{3} polymorphs under stress and strain. The computed properties, including the ferroelectric polarization, reveal that an orthorhombic Pmc21Pmc2_{1} phase is realized on NdGaO3_{3} substrates since this is the only phase with an out-of-plane polarization under a compressive strain. Conversely, the monoclinic PmPm phase is consistent for the samples grown on DyScO3_{3} substrate, since this phase exhibits a spontaneous in-plane polarization along [011]PC_{\mathrm{PC}} under tensile strain.Comment: 9 pages, 5 figures, and supplementary material

    Strain engineering of ferroelectric domains in KxNa1−xNbO3 epitaxial layers

    Get PDF
    The application of lattice strain through epitaxial growth of oxide films on lattice mismatched perovskite-like substrates strongly influences the structural properties of ferroelectric domains and their corresponding piezoelectric behavior. The formation of different ferroelectric phases can be understood by a strain-phase diagram, which is calculated within the framework of the Landau–Ginzburg–Devonshire theory. In this paper, we illustrate the opportunity of ferroelectric domain engineering in the KxNa1−xNbO3 lead-free material system. In particular, the following examples are discussed in detail: (i) Different substrates (NdGaO3, SrTiO3, DyScO3, TbScO3, and GdScO3) are used to systematically tune the incorporated epitaxial strain from compressive to tensile. This can be exploited to adjust the NaNbO3 thin film surface orientation and, concomitantly, the vector of electrical polarization, which rotates from mainly vertical to exclusive in-plane orientation. (ii) In ferroelectric NaNbO3, thin films grown on rare-earth scandate substrates, highly regular stripe domain patterns are observed. By using different film thicknesses, these can be tailored with regard to domain periodicity and vertical polarization component. (iii) A featured potassium concentration of x = 0.9 of KxNa1−xNbO3 thin films grown on (110) NdScO3 substrates favors the coexistence of two equivalent, monoclinic, but differently oriented ferroelectric phases. A complicated herringbone domain pattern is experimentally observed which consists of alternating MC and a1a2 domains. The coexistence of different types of ferroelectric domains leads to polarization discontinuities at the domain walls, potentially enabling high piezoelectric responses. In each of these examples, the experimental results are in excellent agreement with predictions based on the linear elasticity theory

    Spatio-temporal coherent control of thermal excitations in solids

    Full text link
    X-ray reflectivity (XRR) measurements of femtosecond laser-induced transient gratings are applied to demonstrate the spatio-temporal coherent control of thermally induced surface deformations on ultrafast timescales. Using gracing incidence X-ray diffraction we unambiguously measure the amplitude of transient surface deformations with sub-\AA{} resolution. Understanding the dynamics of femtosecond TG excitations in terms of superposition of acoustic and thermal gratings makes it possible to develop new ways of coherent control in X-ray diffraction experiments. Being the dominant source of TG signal, the long-living thermal grating with spatial period Λ\Lambda can be canceled by a second, time-delayed TG excitation shifted by Λ/2\Lambda/2. The ultimate speed limits of such an ultrafast X-ray shutter are inferred from the detailed analysis of thermal and acoustic dynamics in TG experiments

    Self-stabilization of the equilibrium state in ferroelectric thin films

    Get PDF
    (K,Na)NbO3 is a lead-free and sustainable ferroelectric material with electromechanical parameters comparable to Pb(Zr,Ti)O3 (PZT) and other lead-based solid solutions. It is therefore a promising candidate for caloric cooling and energy harvesting applications. Specifically, the structural transition from the low-temperature Mc- to the high-temperature c-phase displays a rich hierarchical order of domains and superdomains, that forms at specific strain conditions. The relevant length scales are few tens of nanometers for the domain and few micrometers for the superdomain size, respectively. Phase-field calculations show that this hierarchical order adds to the total free energy of the solid. Thus, domains and their formation has a strong impact on the functional properties relevant for electrocaloric cooling or energy harvesting applications. However, monitoring the formation of domains and superdomains is difficult and requires both, high spatial and high temporal resolution of the experiment. Synchrotron-based time-resolved X-ray diffraction methods in combination with scanning imaging X-ray microscopy is applied to resolve the local dynamics of the domain morphology with sub-micrometer spatial and nanosecond temporal resolution. In this regime, the material displays a novel self-stabilization mechanism of the domain morphology, which may be a general property of first-order phase transitions

    Reconciling the theoretical and experimental electronic structure of NbO2

    Full text link
    Metal-insulator transition materials such as NbO2 have generated much excitement in recent years for their potential applications in computing and sensing. NbO2 has generated considerable debate over the nature of the phase transition, and the values for the band gap/band widths in the insulating phase. We present a combined theoretical and experimental study of the band gap and electronic structure of the insulating phase of NbO2. We carry out ab-initio density functional theory plus U calculations, directly determining U and J parameters for both the Nb 4d and O 2p subspaces through the recently introduced minimum-tracking linear response method. We find a fundamental bulk band gap of 0.80 eV for the full DFT+U+J theory. We also perform calculations and measurements for a (100) oriented thin film. Scanning tunnelling spectroscopy measurements show that the surface band gap varies from 0.75 eV to 1.35 eV due to an excess of oxygen in and near the surface region of the film. Slab calculations indicate metallicity localised at the surface region caused by an energy level shift consistent with a reduction in Coulomb repulsion. We demonstrate that this effect in combination with the simple, low cost DFT+U+J method can account for the band widths and p-d gap observed in X-ray photoelectron spectroscopy experiments. Overall, our results indicate the possible presence of a 2D anisotropic metallic layer at the (100) surface of NbO2.Comment: 11 pages, 5 figures, plus 3 pages of Supporting Informatio

    Bajetta, Coatalen, and Gibson (eds.), Elizabeth I's Foreign Correspondence: Letters, Rhetoric and Politics (Palgrave Macmillan, 2014)

    No full text
    Review of Carlo M. Bajetta, Guillaume Coatalen, and Jonathon Gibson, eds., Elizabeth I's Foreign Correspondence: Letters, Rhetoric and Politics (London: Palgrave Macmillan, 2014)

    Angestelle vor Gericht: Ein Beitrag zur Verrechtlichung von Arbeitsbeziehungen in Deutschland und Frankreich um 1900

    No full text
    Haupt H-G. Angestelle vor Gericht: Ein Beitrag zur Verrechtlichung von Arbeitsbeziehungen in Deutschland und Frankreich um 1900. In: Münkel D, Schwarzkopf J, eds. Geschichte als Experiment. Frankfurt: Campus; 2004: 226-240
    corecore