70 research outputs found

    The human primary visual cortex (V1) encodes the perceived position of static but not moving objects

    Get PDF
    Brain activity in retinotopic cortex reflects illusory changes in stimulus position. Is this neural signature a general code for apparent position? Here we show that responses in primary visual cortex (V1) are consistent with perception of the Muller-Lyer illusion; however, we found no such signature for another striking illusion, the curveball effect. This demonstrates that V1 does not encode apparent position per se

    Pitfalls in post hoc analyses of population receptive field data

    Get PDF
    Data binning involves grouping observations into bins and calculating bin-wise summary statistics. It can cope with overplotting and noise, making it a versatile tool for comparing many observations. However, data binning goes awry if the same observations are used for binning (selection) and contrasting (selective analysis). This creates circularity, biasing noise components and resulting in artifactual changes in the form of regression towards the mean. Importantly, these artifactual changes are a statistical necessity. Here, we use (null) simulations and empirical repeat data to expose this flaw in the scope of post hoc analyses of population receptive field data. In doing so, we reveal that the type of data analysis, data properties, and circular data cleaning are factors shaping the appearance of such artifactual changes. We furthermore highlight that circular data cleaning and circular sorting of change scores are selection practices that result in artifactual changes even without circular data binning. These pitfalls might have led to erroneous claims about changes in population receptive fields in previous work and can be mitigated by using independent data for selection purposes. Our evaluations highlight the urgency for us researchers to make the validation of analysis pipelines standard practice

    Stacking chairs:local sense and global nonsense

    Get PDF
    We report a confusing stimulus which demonstrates the power of local interpretation of threedimensional structure to disrupt a coherent global perception

    Contextual Illusions Reveal the Limit of Unconscious Visual Processing

    Get PDF
    The perception of even the most elementary features of the visual environment depends strongly on their spatial context. In the study reported here, we asked at what level of abstraction such effects require conscious processing of the context. We compared two visual illusions that alter subjective judgments of brightness: the simultaneous brightness contrast illusion, in which two circles of identical physical brightness appear different because of different surround luminance, and the Kanizsa triangle illusion, which occurs when the visual system extrapolates a surface without actual physical stimulation. We used a novel interocular masking technique that allowed us to selectively render only the context invisible. Simultaneous brightness contrast persisted even when the surround was masked from awareness. In contrast, participants did not experience illusory contours when the inducing context was masked. Our findings show that invisible context is resolvable by low-level processes involved in surface-brightness perception, but not by high-level processes that assign surface borders through perceptual completion

    Direct evidence for encoding of motion streaks in human visual cortex

    No full text
    Temporal integration in the visual system causes fast-moving objects to generate static, oriented traces ('motion streaks'), which could be used to help judge direction of motion. While human psychophysics and single-unit studies in non-human primates are consistent with this hypothesis, direct neural evidence from the human cortex is still lacking. First, we provide psychophysical evidence that faster and slower motions are processed by distinct neural mechanisms: faster motion raised human perceptual thresholds for static orientations parallel to the direction of motion, whereas slower motion raised thresholds for orthogonal orientations. We then used functional magnetic resonance imaging to measure brain activity while human observers viewed either fast ('streaky') or slow random dot stimuli moving in different directions, or corresponding static-oriented stimuli. We found that local spatial patterns of brain activity in early retinotopic visual cortex reliably distinguished between static orientations. Critically, a multivariate pattern classifier trained on brain activity evoked by these static stimuli could then successfully distinguish the direction of fast ('streaky') but not slow motion. Thus, signals encoding static-oriented streak information are present in human early visual cortex when viewing fast motion. These experiments show that motion streaks are present in the human visual system for faster motion.This work was supported by the Wellcome Trust (G.R., D.S.S.), the European Union ‘Mindbridge’ project (B.B.), the Australian Federation of Graduate Women Tempe Mann Scholarship (D.A.), the University of Sydney Campbell Perry Travel Fellowship (D.A.) and the Brain Research Trust (C.K.)

    The role of awareness in shaping responses in human visual cortex

    Get PDF
    The visual cortex contains information about stimuli even when they are not consciously perceived. However, it remains unknown whether the visual system integrates local features into global objects without awareness. Here, we tested this by measuring brain activity in human observers viewing fragmented shapes that were either visible or rendered invisible by fast counterphase flicker. We then projected measured neural responses to these stimuli back into visual space. Visible stimuli caused robust responses reflecting the positions of their component fragments. Their neural representations also strongly resembled one another regardless of local features. By contrast, representations of invisible stimuli differed from one another and, crucially, also from visible stimuli. Our results demonstrate that even the early visual cortex encodes unconscious visual information differently from conscious information, presumably by only encoding local features. This could explain previous conflicting behavioural findings on unconscious visual processing

    Highly accurate retinotopic maps of the physiological blind spot in human visual cortex

    Get PDF
    The physiological blind spot is a naturally occurring scotoma corresponding with the optic disc in the retina of each eye. Even during monocular viewing, observers are usually oblivious to the scotoma, in part because the visual system extrapolates information from the surrounding area. Unfortunately, studying this visual field region with neuroimaging has proven difficult, as it occupies only a small part of retinotopic cortex. Here, we used functional magnetic resonance imaging and a novel data-driven method for mapping the retinotopic organization in and around the blind spot representation in V1. Our approach allowed for highly accurate reconstructions of the extent of an observer’s blind spot, and out-performed conventional model-based analyses. This method opens exciting opportunities to study the plasticity of receptive fields after visual field loss, and our data add to evidence suggesting that the neural circuitry responsible for impressions of perceptual completion across the physiological blind spot most likely involves regions of extrastriate cortex—beyond V1

    Perception and Processing of Faces in the Human Brain Is Tuned to Typical Feature Locations.

    Get PDF
    UNLABELLED: Faces are salient social stimuli whose features attract a stereotypical pattern of fixations. The implications of this gaze behavior for perception and brain activity are largely unknown. Here, we characterize and quantify a retinotopic bias implied by typical gaze behavior toward faces, which leads to eyes and mouth appearing most often in the upper and lower visual field, respectively. We found that the adult human visual system is tuned to these contingencies. In two recognition experiments, recognition performance for isolated face parts was better when they were presented at typical, rather than reversed, visual field locations. The recognition cost of reversed locations was equal to ∼60% of that for whole face inversion in the same sample. Similarly, an fMRI experiment showed that patterns of activity evoked by eye and mouth stimuli in the right inferior occipital gyrus could be separated with significantly higher accuracy when these features were presented at typical, rather than reversed, visual field locations. Our findings demonstrate that human face perception is determined not only by the local position of features within a face context, but by whether features appear at the typical retinotopic location given normal gaze behavior. Such location sensitivity may reflect fine-tuning of category-specific visual processing to retinal input statistics. Our findings further suggest that retinotopic heterogeneity might play a role for face inversion effects and for the understanding of conditions affecting gaze behavior toward faces, such as autism spectrum disorders and congenital prosopagnosia. SIGNIFICANCE STATEMENT: Faces attract our attention and trigger stereotypical patterns of visual fixations, concentrating on inner features, like eyes and mouth. Here we show that the visual system represents face features better when they are shown at retinal positions where they typically fall during natural vision. When facial features were shown at typical (rather than reversed) visual field locations, they were discriminated better by humans and could be decoded with higher accuracy from brain activity patterns in the right occipital face area. This suggests that brain representations of face features do not cover the visual field uniformly. It may help us understand the well-known face-inversion effect and conditions affecting gaze behavior toward faces, such as prosopagnosia and autism spectrum disorders

    Reconciling the theoretical and experimental electronic structure of NbO2

    Full text link
    Metal-insulator transition materials such as NbO2 have generated much excitement in recent years for their potential applications in computing and sensing. NbO2 has generated considerable debate over the nature of the phase transition, and the values for the band gap/band widths in the insulating phase. We present a combined theoretical and experimental study of the band gap and electronic structure of the insulating phase of NbO2. We carry out ab-initio density functional theory plus U calculations, directly determining U and J parameters for both the Nb 4d and O 2p subspaces through the recently introduced minimum-tracking linear response method. We find a fundamental bulk band gap of 0.80 eV for the full DFT+U+J theory. We also perform calculations and measurements for a (100) oriented thin film. Scanning tunnelling spectroscopy measurements show that the surface band gap varies from 0.75 eV to 1.35 eV due to an excess of oxygen in and near the surface region of the film. Slab calculations indicate metallicity localised at the surface region caused by an energy level shift consistent with a reduction in Coulomb repulsion. We demonstrate that this effect in combination with the simple, low cost DFT+U+J method can account for the band widths and p-d gap observed in X-ray photoelectron spectroscopy experiments. Overall, our results indicate the possible presence of a 2D anisotropic metallic layer at the (100) surface of NbO2.Comment: 11 pages, 5 figures, plus 3 pages of Supporting Informatio
    • …
    corecore