326 research outputs found

    Using magnetic nanoparticles to probe protein damage in ferritin caused by freeze concentration

    Get PDF
    We demonstrate a method for monitoring the damage caused to a protein during freeze-thawing in the presence of glycerol, a cryo-protectant. For this work we synthesized magnetite nanoparticles doped with 2.5% cobalt inside the protein ferritin (CMF), dissolved them in different concentration glycerol solutions and measured their magnetization after freezing in a high applied field (5 T). As the temperature was raised, a step-like decrease in the sample magnetization was observed, corresponding to the onset of Brownian relaxation as the viscosity of the freeze-concentrated glycerol solution decreased. The position of the step reveals changes to the protein hydrodynamic radius that we attribute to protein unfolding, while its height depends on how much protein is trapped by ice during freeze concentration. Changes to the protein hydrodynamic radius are confirmed by dynamic light scattering (DLS) measurements, but unlike DLS, the magnetic measurements can provide hydrodynamic data while the solution remains mainly frozen

    Magnonic Metamaterials

    Get PDF
    A large proportion of the recent growth of the volume of electromagnetics research has been associated with the emergence of so called electromagnetic metamaterials1 and the discovered ability to design their unusual properties by tweaking the geometry and structure of the constituent “meta-atoms”. For example, negative permittivity and negative permeability can be achieved, leading to negative refractive index metamaterials. The negative permeability could be obtained via geometrical control of high frequency currents, e.g. in arrays of split ring resonators, or alternatively one could rely on spin resonances in natural magnetic materials, as was suggested by Veselago. The age of nanotechnology therefore sets an intriguing quest for additional benefits to be gained by structuring natural magnetic materials into so called magnonic metamaterials, in which the frequency and strength of resonances based on spin waves (magnons) are determined by the geometry and magnetization configuration of meta-atoms. Spin waves can have frequencies of up to hundreds of GHz (in the exchange dominated regime) and have already been shown to play an important role in the high frequency magnetic response of composites. Moreover, in view of the rapid advances in the field of magnonics, which in particular promises devices employing propagating spin waves, the appropriate design of magnonic metamaterials with properties defined with respect to propagating spin waves rather than electromagnetic waves acquires an independent and significant importance

    Molecular cytogenetics (FISH, GISH) of Coccinia grandis: A ca. 3 myr-old species of Cucurbitaceae with the largest Y/autosome divergence in flowering plants

    Get PDF
    The independent evolution of heteromorphic sex chromosomes in 19 species from 4 families of flowering plants permits studying X/Y divergence after the initial recombination suppression. Here, we document autosome/Y divergence in the tropical Cucurbitaceae Coccinia grandis, which is ca. 3 myr old. Karyotyping and C-value measurements show that the C. grandis Y chromosome has twice the size of any of the other chromosomes, with a male/female C-value difference of 0.094 pg or 10% of the total genome. FISH staining revealed 5S and 45S rDNA sites on autosomes but not on the Y chromosome, making it unlikely that rDNA contributed to the elongation of the Y chromosome; recent end-to-end fusion also seems unlikely given the lack of interstitial telomeric signals. GISH with different concentrations of female blocking DNA detected a possible pseudo-autosomal region on the Y chromosome, and C-banding suggests that the entire Y chromosome in C. grandis is heterochromatic. During meiosis, there is an end-to-end connection between the X and the Y chromosome, but the X does not otherwise differ from the remaining chromosomes. These findings and a review of plants with heteromorphic sex chromosomes reveal no relationship between species age and degree of sex chromosome dimorphism. Its relatively small genome size (0.943 pg/2C in males), large Y chromosome, and phylogenetic proximity to the fully sequenced Cucumis sativus make C. grandis a promising model to study sex chromosome evolution. Copyright © 2012 S. Karger AG, Base

    Single-Molecule Electrochemical Transistor Utilizing a Nickel-Pyridyl Spinterface

    Get PDF
    Using a scanning tunnelling microscope break-junction technique, we produce 4,4â€Č-bipyridine (44BP) single-molecule junctions with Ni and Au contacts. Electrochemical control is used to prevent Ni oxidation and to modulate the conductance of the devices via nonredox gatingthe first time this has been shown using non-Au contacts. Remarkably the conductance and gain of the resulting Ni-44BP-Ni electrochemical transistors is significantly higher than analogous Au-based devices. Ab-initio calculations reveal that this behavior arises because charge transport is mediated by spin-polarized Ni <i>d</i>-electrons, which hybridize strongly with molecular orbitals to form a “spinterface”. Our results highlight the important role of the contact material for single-molecule devices and show that it can be varied to provide control of charge and spin transport
    • 

    corecore