1,550 research outputs found
Whole-brain diffusion tensor imaging predicts 6-month functional outcome in acute intracerebral haemorrhage
Introduction: Small vessel disease (SVD) causes most spontaneous intracerebral haemorrhage (ICH) and is associated with widespread microstructural brain tissue disruption, which can be quantified via diffusion tensor imaging (DTI) metrics: mean diffusivity (MD) and fractional anisotropy (FA). Little is known about the impact of whole-brain microstructural alterations after SVD-related ICH. We aimed to investigate: (1) association between whole-brain DTI metrics and functional outcome after ICH; and (2) predictive ability of these metrics compared to the pre-existing ICH score. Methods: Sixty-eight patients (38.2% lobar) were retrospectively included. We assessed whole-brain DTI metrics (obtained within 5 days after ICH) in cortical and deep grey matter and white matter. We used univariable logistic regression to assess the associations between DTI and clinical-radiological variables and poor outcome (modified Rankin Scale > 2). We determined the optimal predictive variables (via LASSO estimation) in: model 1 (DTI variables only), model 2 (DTI plus non-DTI variables), model 3 (DTI plus ICH score). Optimism-adjusted C-statistics were calculated for each model and compared (likelihood ratio test) against the ICH score. Results: Deep grey matter MD (OR 1.04 [95% CI 1.01–1.07], p = 0.010) and white matter MD (OR 1.11 [95% CI 1.01–1.23], p = 0.044) were associated (univariate analysis) with poor outcome. Discrimination values for model 1 (0.67 [95% CI 0.52–0.83]), model 2 (0.71 [95% CI 0.57–0.85) and model 3 (0.66 [95% CI 0.52–0.82]) were all significantly higher than the ICH score (0.62 [95% CI 0.49–0.75]). Conclusion: Our exploratory study suggests that whole-brain microstructural disruption measured by DTI is associated with poor 6-month functional outcome after SVD-related ICH. Whole-brain DTI metrics performed better at predicting recovery than the existing ICH score
Cerebral Small Vessel Disease and Functional Outcome Prediction after Intracerebral Haemorrhage
OBJECTIVE: To determine whether CT-based cerebral small vessel disease (SVD) biomarkers are associated with 6-month functional outcome after intracerebral hemorrhage (ICH), and whether these biomarkers improve the performance of pre-existing ICH score. METHODS: We included 864 patients with acute ICH from a multicentre, hospital-based prospective cohort study. We evaluated CT-based SVD biomarkers (white matter hypodensities [WMH]; lacunes; brain atrophy; and a composite SVD burden score) and their associations with poor 6-month functional outcome (modified Rankin Scale [mRS] score >2). The area under the receiver operating characteristic curve (AUROC) and Hosmer-Lemeshow test were used to assess discrimination and calibration of the ICH score with and without SVD biomarkers. RESULTS: In multivariable models (adjusted for ICH score components), WMH presence (OR 1.52, 95%CI 1.12-2.06), cortical atrophy presence (OR 1.80, 95%CI 1.19-2.73), deep atrophy presence (OR 1.66, 95%CI 1.17-2.34), and severe atrophy (either deep or cortical) (OR 1.94, 95%CI 1.36-2.74) were independently associated with poor functional outcome. For the ICH score, the AUROC was 0.71 (95%CI 0.68-0.74). Adding SVD markers did not significantly improve ICH score discrimination; for the best model (adding severe atrophy) the AUROC was 0.73 (95%CI 0.69-0.76). These results were confirmed when considering lobar and non-lobar ICH, separately. CONCLUSIONS: The ICH score has acceptable discrimination for predicting 6-month functional outcome after ICH. CT biomarkers of SVD are associated with functional outcome but adding them does not significantly improve ICH score discrimination
Association between critical care admission and 6-month functional outcome after spontaneous intracerebral haemorrhage
BACKGROUND: There is uncertainty about the clinical benefit of admission to critical care after spontaneous intracerebral haemorrhage (ICH). PURPOSE: We investigated factors associated with critical care admission after spontaneous ICH and evaluated associations between critical care and 6-month functional outcome. METHODS: We included 825 patients with acute spontaneous non-traumatic ICH, recruited to a prospective multicenter observational study. We evaluated the characteristics associated with critical care admission and poor 6-month functional outcome (modified Rankin Scale, mRS > 3) using univariable (chi-square test and Wilcoxon rank-sum test, as appropriate) and multivariable analysis. RESULTS: 286 patients (38.2%) had poor 6-month functional outcome. Seventy-seven (9.3%) patients were admitted to critical care. Patients admitted to critical care were younger (p < 0.001), had lower GCS score (p < 0.001), larger ICH volume (p < 0.001), more often had intraventricular extension (p = 0.008) and underwent neurosurgery (p < 0.001). Critical care admission was associated with poor functional outcome at 6 months (39/77 [50.7%] vs 286/748 [38.2%]; p = 0.034); adjusted OR 2.43 [95%CI 1.36-4.35], p = 0.003), but not with death (OR 1.29 [95%CI 0.71-2.35; p = 0.4). In ordinal logistic regression, patients admitted to critical care showed an OR 1.47 (95% CI 0.98-2.20; p = 0.07) for a shift in the 6-month modified Rankin Scale. CONCLUSIONS: Admission to critical care is associated with poor 6-month functional outcome after spontaneous ICH but not with death. Patients admitted to critical care were a priori more severely affected. Although adjusted for main known predictors of poor outcome, our findings could still be confounded by unmeasured factors. Establishing the true effectiveness of critical care after ICH requires a randomised trial with clinical outcomes and quality of life assessments
Osteological and Soft-Tissue Evidence for Pneumatization in the Cervical Column of the Ostrich (Struthio camelus) and Observations on the Vertebral Columns of Non-Volant, Semi-Volant and Semi-Aquatic Birds
© 2015 Apostolaki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
Exoplanet Atmosphere Measurements from Transmission Spectroscopy and other Planet-Star Combined Light Observations
It is possible to learn a great deal about exoplanet atmospheres even when we
cannot spatially resolve the planets from their host stars. In this chapter, we
overview the basic techniques used to characterize transiting exoplanets -
transmission spectroscopy, emission and reflection spectroscopy, and full-orbit
phase curve observations. We discuss practical considerations, including
current and future observing facilities and best practices for measuring
precise spectra. We also highlight major observational results on the
chemistry, climate, and cloud properties of exoplanets.Comment: Accepted review chapter; Handbook of Exoplanets, eds. Hans J. Deeg
and Juan Antonio Belmonte (Springer-Verlag). 22 pages, 6 figure
Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin
Pathological processes involved in the initiation of rheumatoid synovitis remain unclear. We undertook the present study to identify immune and stromal processes that are present soon after the clinical onset of rheumatoid arthritis ( RA) by assessing a panel of T cell, macrophage, and stromal cell related cytokines and chemokines in the synovial fluid of patients with early synovitis. Synovial fluid was aspirated from inflamed joints of patients with inflammatory arthritis of duration 3 months or less, whose outcomes were subsequently determined by follow up. For comparison, synovial fluid was aspirated from patients with acute crystal arthritis, established RA and osteoarthritis. Rheumatoid factor activity was blocked in the synovial fluid samples, and a panel of 23 cytokines and chemokines measured using a multiplex based system. Patients with early inflammatory arthritis who subsequently developed RA had a distinct but transient synovial fluid cytokine profile. The levels of a range of T cell, macrophage and stromal cell related cytokines ( e. g. IL-2, IL-4, IL-13, IL-17, IL-15, basic fibroblast growth factor and epidermal growth factor) were significantly elevated in these patients within 3 months after symptom onset, as compared with early arthritis patients who did not develop RA. In addition, this profile was no longer present in established RA. In contrast, patients with non-rheumatoid persistent synovitis exhibited elevated levels of interferon-gamma at initiation. Early synovitis destined to develop into RA is thus characterized by a distinct and transient synovial fluid cytokine profile. The cytokines present in the early rheumatoid lesion suggest that this response is likely to influence the microenvironment required for persistent RA
The Peripheral Blood Transcriptome Identifies the Presence and Extent of Disease in Idiopathic Pulmonary Fibrosis
<div><h3>Rationale</h3><p>Peripheral blood biomarkers are needed to identify and determine the extent of idiopathic pulmonary fibrosis (IPF). Current physiologic and radiographic prognostic indicators diagnose IPF too late in the course of disease. We hypothesize that peripheral blood biomarkers will identify disease in its early stages, and facilitate monitoring for disease progression.</p> <h3>Methods</h3><p>Gene expression profiles of peripheral blood RNA from 130 IPF patients were collected on Agilent microarrays. Significance analysis of microarrays (SAM) with a false discovery rate (FDR) of 1% was utilized to identify genes that were differentially-expressed in samples categorized based on percent predicted D<sub>L</sub>CO and FVC.</p> <h3>Main Measurements and Results</h3><p>At 1% FDR, 1428 genes were differentially-expressed in mild IPF (D<sub>L</sub>CO >65%) compared to controls and 2790 transcripts were differentially- expressed in severe IPF (D<sub>L</sub>CO >35%) compared to controls. When categorized by percent predicted D<sub>L</sub>CO, SAM demonstrated 13 differentially-expressed transcripts between mild and severe IPF (< 5% FDR). These include CAMP, CEACAM6, CTSG, DEFA3 and A4, OLFM4, HLTF, PACSIN1, GABBR1, IGHM, and 3 unknown genes. Principal component analysis (PCA) was performed to determine outliers based on severity of disease, and demonstrated 1 mild case to be clinically misclassified as a severe case of IPF. No differentially-expressed transcripts were identified between mild and severe IPF when categorized by percent predicted FVC.</p> <h3>Conclusions</h3><p>These results demonstrate that the peripheral blood transcriptome has the potential to distinguish normal individuals from patients with IPF, as well as extent of disease when samples were classified by percent predicted D<sub>L</sub>CO, but not FVC.</p> </div
Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches
Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, AndrĂ©s. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones BioquĂmicas de Buenos Aires. FundaciĂłn Instituto Leloir. Instituto de Investigaciones BioquĂmicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de CronobiologĂa; ArgentinaFil: Garavaglia, MatĂas Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de Ing.genĂ©tica y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Goya, MarĂa Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de CronobiologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de Ing.genĂ©tica y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂa. Laboratorio de CronobiologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentin
- …