21,989 research outputs found

    Domain walls and chaos in the disordered SOS model

    Get PDF
    Domain walls, optimal droplets and disorder chaos at zero temperature are studied numerically for the solid-on-solid model on a random substrate. It is shown that the ensemble of random curves represented by the domain walls obeys Schramm's left passage formula with kappa=4 whereas their fractal dimension is d_s=1.25, and therefore is NOT described by "Stochastic-Loewner-Evolution" (SLE). Optimal droplets with a lateral size between L and 2L have the same fractal dimension as domain walls but an energy that saturates at a value of order O(1) for L->infinity such that arbitrarily large excitations exist which cost only a small amount of energy. Finally it is demonstrated that the sensitivity of the ground state to small changes of order delta in the disorder is subtle: beyond a cross-over length scale L_delta ~ 1/delta the correlations of the perturbed ground state with the unperturbed ground state, rescaled by the roughness, are suppressed and approach zero logarithmically.Comment: 23 pages, 11 figure

    The loss of anisotropy in MgB2 with Sc substitution and its relationship with the critical temperature

    Full text link
    The electrical conductivity anisotropy of the sigma-bands is calculated for the (Mg,Sc)B2 system using a virtual crystal model. Our results reveal that anisotropy drops with relatively little scandium content (< 30%); this behaviour coincides with the lowering of Tc and the reduction of the Kohn anomaly. This anisotropy loss is also found in the Al and C doped systems. In this work it is argued that the anisotropy, or 2D character, of the sigma-bands is an important parameter for the understanding of the high Tc found in MgB2

    Mean curvature flow of monotone Lagrangian submanifolds

    Full text link
    We use holomorphic disks to describe the formation of singularities in the mean curvature flow of monotone Lagrangian submanifolds in Cn\mathbb C^{n}.Comment: 37 pages, 3 figure

    Dynamics of Interacting Quintessence Models: Observational Constraints

    Full text link
    Interacting quintessence models have been proposed to explain or, at least, alleviate the coincidence problem of late cosmic acceleration. In this paper we are concerned with two aspects of these kind of models: (i) the dynamical evolution of the model of Chimento et al. [L.P. Chimento, A.S. Jakubi, D. Pavon, and W. Zimdahl, Phys. Rev. D 67, 083513 (2003).], i.e., whether its cosmological evolution gives rise to a right sequence of radiation, dark matter and dark energy dominated eras, and (ii) whether the dark matter dark energy ratio asymptotically evolves towards a non-zero constant. After showing that the model correctly reproduces these eras, we correlate three data sets that constrain the interaction at three redshift epochs: z104z\le 10^{4}, z=103z=10^{3}, and z=1z=1. We discuss the model selection and argue that even if the model under consideration fulfills both requirements, it is heavily constrained by observation. The prospects that the coincidence problem can be explained by the coupling of dark matter to dark energy are not clearly favored by the data.Comment: 16 pages, 7 figures and 3 tables. Modifications introduced to match published versio

    C and S induces changes in the electronic and geometric structure of Pd(533) and Pd(320)

    Full text link
    We have performed ab initio electronic structure calculations of C and S adsorption on two vicinal surfaces of Pd with different terrace geometry and width. We find both adsorbates to induce a significant perturbation of the surface electronic and geometric structure of Pd(533) and Pd(320). In particular C adsorbed at the bridge site at the edge of a Pd chain in Pd(320) is found to penetrate the surface to form a sub-surface structure. The adsorption energies show almost linear dependence on the number of adsorbate-metal bonds, and lie in the ranges of 5.31eV to 8.58eV for C and 2.89eV to 5.40eV for S. A strong hybridization between adsorbate and surface electronic states causes a large splitting of the bands leading to a drastic decrease in the local densities of electronic states at the Fermi-level for Pd surface atoms neighboring the adsorbate which may poison catalytic activity of the surface. Comparison of the results for Pd(533) with those obtained earlier for Pd(211) suggests the local character of the impact of the adsorbate on the geometric and electronic structures of Pd surfaces.Comment: 14 pages 9 figs, Accepted J. Phys: Conden

    Electronic structure of the ferromagnetic superconductor UCoGe from first principles

    Full text link
    The superconductor UCoGe is analyzed with electronic structure calculations using Linearized Augmented Plane Wave method based on Density Functional Theory. Ferromagnetic and antiferromagnetic calculations with and without correlations (via LDA+U) were done. In this compound the Fermi level is situated in a region where the main contribution to DOS comes from the U-5f orbital. The magnetic moment is mainly due to the Co-3d orbital with a small contribution from the U-5f orbital. The possibility of fully non-collinear magnetism in this compound seems to be ruled out. These results are compared with the isostructural compound URhGe, in this case the magnetism comes mostly from the U-5f orbital
    corecore