We have performed ab initio electronic structure calculations of C and S
adsorption on two vicinal surfaces of Pd with different terrace geometry and
width. We find both adsorbates to induce a significant perturbation of the
surface electronic and geometric structure of Pd(533) and Pd(320). In
particular C adsorbed at the bridge site at the edge of a Pd chain in Pd(320)
is found to penetrate the surface to form a sub-surface structure. The
adsorption energies show almost linear dependence on the number of
adsorbate-metal bonds, and lie in the ranges of 5.31eV to 8.58eV for C and
2.89eV to 5.40eV for S. A strong hybridization between adsorbate and surface
electronic states causes a large splitting of the bands leading to a drastic
decrease in the local densities of electronic states at the Fermi-level for Pd
surface atoms neighboring the adsorbate which may poison catalytic activity of
the surface. Comparison of the results for Pd(533) with those obtained earlier
for Pd(211) suggests the local character of the impact of the adsorbate on the
geometric and electronic structures of Pd surfaces.Comment: 14 pages 9 figs, Accepted J. Phys: Conden