22,991 research outputs found

    Scale dependence of cosmological backreaction

    Full text link
    Due to the non-commutation of spatial averaging and temporal evolution, inhomogeneities and anisotropies (cosmic structures) influence the evolution of the averaged Universe via the cosmological backreaction mechanism. We study the backreaction effect as a function of averaging scale in a perturbative approach up to higher orders. We calculate the hierarchy of the critical scales, at which 10% effects show up from averaging at different orders. The dominant contribution comes from the averaged spatial curvature, observable up to scales of 200 Mpc. The cosmic variance of the local Hubble rate is 10% (5%) for spherical regions of radius 40 (60) Mpc. We compare our result to the one from Newtonian cosmology and Hubble Space Telescope Key Project data.Comment: 6 pages, 2 figures; v3: substantial modifications, new figure

    Energy and Mass Generation

    Full text link
    Modifications in the energy momentum dispersion laws due to a noncommutative geometry, have been considered in recent years. We examine the oscillations of extended objects in this perspective and find that there is now a "generation" of energy.Comment: 13 pages Late

    Quantum kk-core conduction on the Bethe lattice

    Full text link
    Classical and quantum conduction on a bond-diluted Bethe lattice is considered. The bond dilution is subject to the constraint that every occupied bond must have at least k−1k-1 neighboring occupied bonds, i.e. kk-core diluted. In the classical case, we find the onset of conduction for k=2k=2 is continuous, while for k=3k=3, the onset of conduction is discontinuous with the geometric random first-order phase transition driving the conduction transition. In the quantum case, treating each occupied bond as a random scatterer, we find for k=3k=3 that the random first-order phase transition in the geometry also drives the onset of quantum conduction giving rise to a new universality class of Anderson localization transitions.Comment: 12 pgs., 6 fig

    Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b

    Get PDF
    (Abridged) In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmospheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. Here we present the analysis of spectra of the system at 2.3 micron, obtained at a resolution of R~100,000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet's thermal spectrum and the radial component of its orbital velocity. We detect molecular absorption from carbon monoxide and water vapor with a combined S/N of 6.3, at a projected planet orbital velocity of K_P = (142.8 +- 3.4) km/s, which translates into a planet mass of M_P = (0.98 +- 0.04) Jupiter masses, and an orbital inclination of i = (67.7 +- 4.3) degrees, using the known stellar radial velocity and stellar mass. The detection of absorption features rather than emission means that, despite being highly irradiated, HD 179949 b does not have an atmospheric temperature inversion in the probed range of pressures and temperatures. Since the host star is active (R_HK > -4.9), this is in line with the hypothesis that stellar activity damps the onset of thermal inversion layers owing to UV flux photo-dissociating high-altitude, optical absorbers. Finally, our analysis favors an oxygen-rich atmosphere for HD 179949 b, although a carbon-rich planet cannot be statistically ruled out based on these data alone.Comment: 10 pages, 9 figures. Accepted for publication in Astronomy and Astrophysic

    A Note on Marginally Stable Bound States in Type II String Theory

    Get PDF
    Spectrum of elementary string states in type II string theory contains ultra-short multiplets that are marginally stable. UU-duality transformation converts these states into bound states at threshold of pp-branes carrying Ramond-Ramond charges, and wrapped around pp-cycles of a torus. We propose a test for the existence of these marginally stable bound states. Using the recent results of Polchinski and of Witten, we argue that the spectrum of bound states of pp-branes is in agreement with the prediction of UU-duality.Comment: LaTeX file, 6 page

    Discovery of Non-radial pulsations in PQ Andromedae

    Full text link
    We have detected pulsations in time-series photometry of the WZ Sge dwarf nova PQ And. The strongest peak in the power spectrum occurs at a period of 10.5 minutes. Similar periods have been observed in other WZ Sge systems and are attributed to ZZ Ceti type non-radial pulsations. There is no indication in the photometry of an approximately 1.7 hour orbital period as reported in previous spectroscopic observations.Comment: 7 pages, 5 figure

    Interpreting the M2-brane Action

    Get PDF
    The world-volume theory of multiple M2-branes proposed recently has a free scalar field. For large vev of this scalar field the world-volume action reduces to that of multiple D2-branes with Yang-Mills coupling proportional to the vev. We suggest that the correct interpretation of this scalar field is as the radial position of the M2-brane center of mass in a cylindrical polar coordinate system. Regarding the azimuthal angle as compact we can regard this as a set of coincident D2-branes in type IIA string theory with varying dilaton and metric. We find that the effective world-volume theory on the D2-branes has Yang-Mills coupling proportional to the radial coordinate; furthermore the radial coordinate satisfies free field equations of motion. This agrees with the corresponding results derived from the M2-brane world-volume theory.Comment: LaTeX file, 6 page

    The Dynamics of D-3-brane Dyons and Toric Hyper-K\"ahler manifolds

    Full text link
    We find the dyonic worldvolume solitons due to parallel (p,q) strings ending on a D-3-brane. These solutions preserve 1/4 of bulk supersymmetry. Then we investigate the scattering of well-separated dyons and find that their moduli space is a toric hyper-K\"ahler manifold. In addition, we present the worldvolume solitons of the D-3-brane which are related by duality to the M-theory configuration of two orthogonal membranes ending on a M-5-brane. We show that these solitons preserve 1/8 of supersymmetry and compute their effective action.Comment: 25 pages, phyzz

    Intrinsic hole localization mechanism in magnetic semiconductors

    Full text link
    The interplay between clustering and exchange coupling in magnetic semiconductors for the prototype (Ga_{1-x},Mn_x)As with manganese concentrations x of 1/16 and 1/32 in the interesting experimental range is investigated. For x ~ 6 %, when all possible arrangements of two atoms within a large supercell are considered, the clustering of Mn atoms at nearest-neighbour Ga sites is energetically preferred. As shown by spin density analysis, this minimum energy configuration localizes further one hole and reduces the effective charge carrier concentration. Also the exchange coupling constant increases to a value corresponding to lower Mn concentrations with decreasing inter Mn distance.Comment: Accepted for publication in Journal of Physics: Condensed Matte
    • …
    corecore