7,280 research outputs found
Classical electromagnetic field theory in the presence of magnetic sources
Using two new well defined 4-dimensional potential vectors, we formulate the
classical Maxwell's field theory in a form which has manifest Lorentz
covariance and SO(2) duality symmetry in the presence of magnetic sources. We
set up a consistent Lagrangian for the theory. Then from the action principle
we get both Maxwell's equation and the equation of motion of a dyon moving in
the electro-magnetic field.Comment: 10 pages, no figure
Incommensurate ground state of double-layer quantum Hall systems
Double-layer quantum Hall systems possess interlayer phase coherence at
sufficiently small layer separations, even without interlayer tunneling. When
interlayer tunneling is present, application of a sufficiently strong in-plane
magnetic field drives a commensurate-incommensurate (CI)
transition to an incommensurate soliton-lattice (SL) state. We calculate the
Hartree-Fock ground-state energy of the SL state for all values of
within a gradient approximation, and use it to obtain the
anisotropic SL stiffness, the Kosterlitz-Thouless melting temperature for the
SL, and the SL magnetization. The in-plane differential magnetic susceptibility
diverges as when the CI transition is approached
from the SL state.Comment: 12 pages, 7 figures, to be published in Physical Review
Linear approaches to intramolecular Förster Resonance Energy Transfer probe measurements for quantitative modeling
Numerous unimolecular, genetically-encoded Forster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R<sub>alt</sub>) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R<sub>alt</sub> are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purpose
The effects of changes in the order of verbal labels and numerical values on children's scores on attitude and rating scales
Research with adults has shown that variations in verbal labels and numerical scale values on rating scales can affect the responses given. However, few studies have been conducted with children. The study aimed to examine potential differences in children’s responses to Likert-type rating scales according to their anchor points and scale direction, and to see whether or not such differences were stable over time. 130 British children, aged 9 to 11, completed six sets of Likert-type rating scales, presented in four different ways varying the position of positive labels and numerical values. The results showed, both initially and 8-12 weeks later, that presenting a positive label or a high score on the left of a scale led to significantly higher mean scores than did the other variations. These findings indicate that different arrangements of rating scales can produce different results which has clear implications for the administration of scales with children
An Algebraic Criterion for the Ultraviolet Finiteness of Quantum Field Theories
An algebraic criterion for the vanishing of the beta function for
renormalizable quantum field theories is presented. Use is made of the descent
equations following from the Wess-Zumino consistency condition. In some cases,
these equations relate the fully quantized action to a local gauge invariant
polynomial. The vanishing of the anomalous dimension of this polynomial enables
us to establish a nonrenormalization theorem for the beta function ,
stating that if the one-loop order contribution vanishes, then will
vanish to all orders of perturbation theory. As a by-product, the special case
in which is only of one-loop order, without further corrections, is
also covered. The examples of the N=2,4 supersymmetric Yang-Mills theories are
worked out in detail.Comment: 1+32 pages, LaTeX2e, typos correcte
Ba3Ga3N5 - A Novel Host Lattice for Eu2+ - Doped Luminescent Materials with Unexpected Nitridogallate Substructure
The alkaline earth nitridogallate Ba3Ga3N5 was synthesized from the elements in a sodium flux at 760°C utilizing weld shut tantalum ampules. The crystal structure was solved and refined on the basis of single-crystal X-ray diffraction data. Ba3Ga3N5 (space group C2/c (No. 15), a = 16.801(3), b = 8.3301(2), c = 11.623(2) Å, β = 109.92 (3)°, Z = 8) contains a hitherto unknown structural motif in nitridogallates, namely, infinite strands made up of GaN4 tetrahedra, each sharing two edges and at least one corner with neighboring GaN4 units. There are three Ba2+ sites with coordination numbers six or eight, respectively, and one Ba2+ position exhibiting a low coordination number 4 corresponding to a distorted tetrahedron. Eu2+ - doped samples show red luminescence when excited by UV irradiation at room temperature. Luminescence investigations revealed a maximum emission intensity at 638 nm (FWHM =2123 cm−1). Ba3Ga3N5 is the first nitridogallate for which parity allowed broadband emission due to Eu2+ - doping has been found. The electronic structure of both Ba3Ga3N5 as well as isoelectronic but not isostructural Sr3Ga3N5 was investigated by DFT methods. The calculations revealed a band gap of 1.53 eV for Sr3Ga3N5 and 1.46 eV for Ba3Ga3N5
The AMANDA Neutrino Telescope: Principle of Operation and First Results
AMANDA is a high-energy neutrino telescope presently under construction at
the geographical South Pole. In the Antarctic summer 1995/96, an array of 80
optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths
between 1.5 and 2 km. In this paper we describe the design and performance of
the AMANDA-B4 prototype, based on data collected between February and November
1996. Monte Carlo simulations of the detector response to down-going
atmospheric muon tracks show that the global behavior of the detector is
understood. We describe the data analysis method and present first results on
atmospheric muon reconstruction and separation of neutrino candidates. The
AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97
(AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.Comment: 36 pages, 23 figures, submitted to Astroparticle Physic
Dynamical Dark Energy or Simply Cosmic Curvature?
We show that the assumption of a flat universe induces critically large
errors in reconstructing the dark energy equation of state at z>~0.9 even if
the true cosmic curvature is very small, O(1%) or less. The spuriously
reconstructed w(z) shows a range of unusual behaviour, including crossing of
the phantom divide and mimicking of standard tracking quintessence models. For
1% curvature and LCDM, the error in w grows rapidly above z~0.9 reaching
(50%,100%) by redshifts of (2.5,2.9) respectively, due to the long cosmological
lever arm. Interestingly, the w(z) reconstructed from distance data and Hubble
rate measurements have opposite trends due to the asymmetric influence of the
curved geodesics. These results show that including curvature as a free
parameter is imperative in any future analyses attempting to pin down the
dynamics of dark energy, especially at moderate or high redshifts.Comment: 5 pages, 2 figures. To appear in JCA
Pressure effects on the electron-doped high Tc superconductor BaFe(2-x)Co(x)As(2)
Application of pressures or electron-doping through Co substitution into Fe
sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a
superconductor with the Tc exceeding 20K. We carried out systematic transport
measurements of BaFe(2-x)Co(x)As(2) superconductors in pressures up to 2.5GPa,
and elucidate the interplay between the effects of electron-doping and
pressures. For the underdoped sample with nominal composition x = 0.08,
application of pressure strongly suppresses a magnetic instability while
enhancing Tc by nearly a factor of two from 11K to 21K. In contrast, the
optimally doped x=0.20 sample shows very little enhancement of Tc=22K under
applied pressure. Our results strongly suggest that the proximity to a magnetic
instability is the key to the mechanism of superconductivity in iron-pnictides.Comment: 5 figure
- …