20,955 research outputs found

    Weak Scale Superstrings

    Get PDF
    Recent developments in string duality suggest that the string scale may not be irrevocably tied to the Planck scale. Two explicit but unrealistic examples are described where the ratio of the string scale to the Planck scale is arbitrarily small. Solutions which are more realistic may exist in the intermediate coupling or ``truly strong coupling'' region of the heterotic string. Weak scale superstrings have dramatic experimental consequences for both collider physics and cosmology.Comment: harvmac, 14 pages. References added, 3 typos fixed, Comments added at beginning of section 4 emphasizing flaws of the toy example

    Power spectra from an inflaton coupled to the Gauss-Bonnet term

    Full text link
    We consider power-law inflation with a Gauss-Bonnet correction inspired by string theory. We analyze the stability of cosmological perturbations and obtain the allowed parameter space. We find that for GB-dominated inflation ultra-violet instabilities of either scalar or tensor perturbations show up on small scales. The Gauss-Bonnet correction with a positive (or negative) coupling may lead to a reduction (or enhancement) of the tensor-to-scalar ratio in the potential-dominated case. We place tight constraints on the model parameters by making use of the WMAP 5-year data.Comment: 5 pages, 4 figures, RevTeX, references added, published versio

    A Note on Marginally Stable Bound States in Type II String Theory

    Get PDF
    Spectrum of elementary string states in type II string theory contains ultra-short multiplets that are marginally stable. UU-duality transformation converts these states into bound states at threshold of pp-branes carrying Ramond-Ramond charges, and wrapped around pp-cycles of a torus. We propose a test for the existence of these marginally stable bound states. Using the recent results of Polchinski and of Witten, we argue that the spectrum of bound states of pp-branes is in agreement with the prediction of UU-duality.Comment: LaTeX file, 6 page

    Structural and Electronic Properties of the Interface between the High-k oxide LaAlO3 and Si(001)

    Full text link
    The structural and electronic properties of the LaAlO3/Si(001) interface are determined using state-of-the-art electronic structure calculations. The atomic structure differs from previous proposals, but is reminiscent of La adsorption structures on silicon. A phase diagram of the interface stability is calculated as a function of oxygen and Al chemical potentials. We find that an electronically saturated interface is obtained only if dopant atoms segregate to the interface. These findings raise serious doubts whether LaAlO3 can be used as an epitaxial gate dielectric.Comment: 4 pages, 5 figure

    Kinematic and morphological modeling of the bipolar nebula Sa2-237

    Full text link
    We present [OIII]500.7nm and Halpha+[NII] images and long-slit, high resolution echelle spectra in the same spectral regions of Sa2--237, a possible bipolar planetary nebula. The image shows a bipolar nebula of about 34" extent, with a narrow waist, and showing strong point symmetry about the central object, indicating it's likely binary nature. The long slit spectra were taken over the long axis of the nebula, and show a distinct ``eight'' shaped pattern in the velocity--space plot, and a maximum projected outflow velocity of V=106km/s, both typical of expanding bipolar planetary nebulae. By model fitting the shape and spectrum of the nebula simultaneously, we derive the inclination of the long axis to be 70 degrees, and the maximum space velocity of expansion to be 308 km/s. Due to asymmetries in the velocities we adopt a new value for the system's heliocentric radial velocity of -30km/s. We use the IRAS and 21cm radio fluxes, the energy distribution, and the projected size of Sa2-237 to estimate it's distance to be 2.1+-0.37kpc. At this distance Sa2-237 has a luminosity of 340 Lsun, a size of 0.37pc, and -- assuming constant expansion velocity -- a nebular age of 624 years. The above radial velocity and distance place Sa2--237 in the disk of the Galaxy at z=255pc, albeit with somewhat peculiar kinematics.Comment: 10pp, 4 fig

    Therapeutic efficacy of anti-MMP9 antibody in combination with nab-paclitaxel-based chemotherapy in pre-clinical models of pancreatic cancer

    Get PDF
    Matrix metalloproteinase 9 (MMP9) is involved in the proteolysis of extracellular proteins and plays a critical role in pancreatic ductal adenocarcinoma (PDAC) progression, invasion and metastasis. The therapeutic potential of an anti-MMP9 antibody (αMMP9) was evaluated in combination with nab-paclitaxel (NPT)-based standard cytotoxic therapy in pre-clinical models of PDAC. Tumour progression and survival studies were performed in NOD/SCID mice. The mechanistic evaluation involved RNA-Seq, Luminex, IHC and Immunoblot analyses of tumour samples. Median animal survival compared to controls was significantly increased after 2-week therapy with NPT (59%), Gem (29%) and NPT+Gem (76%). Addition of αMMP9 antibody exhibited further extension in survival: NPT+αMMP9 (76%), Gem+αMMP9 (47%) and NPT+Gem+αMMP9 (94%). Six-week maintenance therapy revealed that median animal survival was significantly increased after NPT+Gem (186%) and further improved by the addition of αMMP9 antibody (218%). Qualitative assessment of mice exhibited that αMMP9 therapy led to a reduction in jaundice, bloody ascites and metastatic burden. Anti-MMP9 antibody increased the levels of tumour-associated IL-28 (1.5-fold) and decreased stromal markers (collagen I, αSMA) and the EMT marker vimentin. Subcutaneous tumours revealed low but detectable levels of MMP9 in all therapy groups but no difference in MMP9 expression. Anti-MMP9 antibody monotherapy resulted in more gene expression changes in the mouse stroma compared to the human tumour compartment. These findings suggest that anti-MMP9 antibody can exert specific stroma-directed effects that could be exploited in combination with currently used cytotoxics to improve clinical PDAC therapy

    Self-Repairing Disk Arrays

    Full text link
    As the prices of magnetic storage continue to decrease, the cost of replacing failed disks becomes increasingly dominated by the cost of the service call itself. We propose to eliminate these calls by building disk arrays that contain enough spare disks to operate without any human intervention during their whole lifetime. To evaluate the feasibility of this approach, we have simulated the behavior of two-dimensional disk arrays with n parity disks and n(n-1)/2 data disks under realistic failure and repair assumptions. Our conclusion is that having n(n+1)/2 spare disks is more than enough to achieve a 99.999 percent probability of not losing data over four years. We observe that the same objectives cannot be reached with RAID level 6 organizations and would require RAID stripes that could tolerate triple disk failures.Comment: Part of ADAPT Workshop proceedings, 2015 (arXiv:1412.2347
    • 

    corecore