1,038 research outputs found

    Notes on Bonds: Illiquidity Feedback During the Financial Crisis

    Get PDF
    This paper traces the evolution of extreme illiquidity discounts among Treasury securities during the financial crisis; bonds fell more than six percent below more-liquid but otherwise identical notes. Using high-resolution data on market quality and trader identities and characteristics, we find that the discounts amplify through feedback loops, where cheaper, less-liquid securities flow to investors with longer horizons, thereby increasing their illiquidity and thus their appeal to these investors. The effect of the widened liquidity gap on transactions costs is further amplified by a surge in the price liquidity providers charged for access to their balance sheets in the crisis

    Discovery of Non-radial pulsations in PQ Andromedae

    Full text link
    We have detected pulsations in time-series photometry of the WZ Sge dwarf nova PQ And. The strongest peak in the power spectrum occurs at a period of 10.5 minutes. Similar periods have been observed in other WZ Sge systems and are attributed to ZZ Ceti type non-radial pulsations. There is no indication in the photometry of an approximately 1.7 hour orbital period as reported in previous spectroscopic observations.Comment: 7 pages, 5 figure

    Abundance analysis of the slow nova PW Vulpeculae 1984

    Get PDF
    We determine the elemental abundances for the ejecta of the slow nova PW Vul 1984. Our technique uses a minimization of the emission line fits of a photoionization model to available ultraviolet, optical and infrared spectra. We find the following abundances (by number) with respect to solar: He/H = 1.0 ±\pm 0.4, C/H = 7.0 −4+7^{+7}_{-4}, N/H = 85 −41+59^{+59}_{-41} and O/H = 6 −2+7^{+7}_{-2}. In addition, there is weak evidence for solar Ne and Mg and twice solar Fe. Previous studies (Saizar et al. 1991 and Andre\"{a} et al. 1991, 1994) of PW Vul have yielded considerable differences in their derived elemental abundances for the ejecta. Our abundances fall in between the previous studies. To explain the discrepant abundances, we analyze in detail the data and methods used to obtain the previous results. The abundances of Saizar et al. (1991) are significantly smaller then our values because of the lower electron temperature used by Saizar et al. in deriving elemental abundances from ion abundances. Andre\"{a} et al. (1991) used an ionization correction method to obtain their abundances and verified their results with a photoionization model (Andre\"{a} et al. 1994). Our analysis of their data shows that the absolute fluxes of the optical emission lines used by Andre\"{a} are underestimated by 15% leading to a factor of 2 increase in their derived abundances. We also find the photoionization model used by Andre\"{a} et al. (1994) predicts 2 times more carbon than the photoionization code we used even when fitting the same data with similar model parameters.Comment: 9 pages, figures not included, full text with figures available at ftp://calvin.physast.uga.edu/pub/preprints/PW-Vul.ps.gz, MNRAS, in pres

    Elemental Abundances in the Ejecta of Old Classical Novae from Late-Epoch Spitzer Spectra

    Full text link
    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs. We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO white dwarf.Comment: 22 pages, 12 figure

    Pan-chromatic observations of the remarkable nova LMC 2012

    Full text link
    We present the results of an intensive multiwavelength campaign on nova LMC 2012. This nova evolved very rapidly in all observed wavelengths. The time to fall two magnitudes in the V band was only 2 days. In X-rays the super soft phase began 13±\pm5 days after discovery and ended around day 50 after discovery. During the super soft phase, the \Swift/XRT and \Chandra\ spectra were consistent with the underlying white dwarf being very hot, ∼\sim 1 MK, and luminous, ∼\sim 1038^{38} erg s−1^{-1}. The UV, optical, and near-IR photometry showed a periodic variation after the initial and rapid fading had ended. Timing analysis revealed a consistent 19.24±\pm0.03 hr period in all UV, optical, and near-IR bands with amplitudes of ∼\sim 0.3 magnitudes which we associate with the orbital period of the central binary. No periods were detected in the corresponding X-ray data sets. A moderately high inclination system, ii = 60±\pm10^{\arcdeg}, was inferred from the early optical emission lines. The {\it HST}/STIS UV spectra were highly unusual with only the \ion{N}{5} (1240\AA) line present and superposed on a blue continuum. The lack of emission lines and the observed UV and optical continua from four epochs can be fit with a low mass ejection event, ∼\sim 10−6^{-6} M⊙_{\odot}, from a hot and massive white dwarf near the Chandrasekhar limit. The white dwarf, in turn, significantly illuminated its subgiant companion which provided the bulk of the observed UV/optical continuum emission at the later dates. The inferred extreme white dwarf characteristics and low mass ejection event favor nova LMC 2012 being a recurrent nova of the U Sco subclass.Comment: 18 figures, 6 tables (one online only containing all the photometry

    Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1

    Get PDF
    COP9 signalosome (CSN) cleaves the ubiquitin-like protein Nedd8 from the Cul1 subunit of SCF ubiquitin ligases. The Jab1/MPN domain metalloenzyme (JAMM) motif in the Jab1/Csn5 subunit was found to underlie CSN's Nedd8 isopeptidase activity. JAMM is found in proteins from archaea, bacteria, and eukaryotes, including the Rpn11 subunit of the 26S proteasome. Metal chelators and point mutations within JAMM abolished CSN-dependent cleavage of Nedd8 from Cul1, yet had little effect on CSN complex assembly. Optimal SCF activity in yeast and both viability and proper photoreceptor cell (R cell) development in Drosophila melanogaster required an intact Csn5 JAMM domain. We propose that JAMM isopeptidases play important roles in a variety of physiological pathways
    • …
    corecore