3,689 research outputs found
Patients Under Pressure: Profiles of How Families Affected by Cancer Are Faring in the Recession
Describes how the loss of jobs and health insurance affected six cancer patients and their families. Examines barriers to maintaining health coverage, purchasing non-group coverage, and limitations on public coverage
A medieval fallacy: the crystalline lens in the center of the eye.
ObjectiveTo determine whether, as most modern historians have written, ancient Greco-Roman authors believed the crystalline lens is positioned in the center of the eye.BackgroundHistorians have written that statements about cataract couching by Celsus, or perhaps Galen of Pergamon, suggested a centrally located lens. Celsus specifically wrote that a couching needle placed intermediate between the corneal limbus and the lateral canthus enters an empty space, presumed to represent the posterior chamber.MethodsAncient ophthalmic literature was analyzed to understand where these authors believed the crystalline lens was positioned. In order to estimate where Celsus proposed entering the eye during couching, we prospectively measured the distance from the temporal corneal limbus to the lateral canthus in 30 healthy adults.ResultsRufus of Ephesus and Galen wrote that the lens is anterior enough to contact the iris. Galen wrote that the lens equator joins other ocular structures at the corneoscleral junction. In 30 subjects, half the distance from the temporal corneal limbus to the lateral canthus was a mean of 4.5 mm (range: 3.3-5.3 mm). Descriptions of couching by Celsus and others are consistent with pars plana entry of the couching needle. Anterior angulation of the needle would permit contact of the needle with the lens.ConclusionAncient descriptions of anatomy and couching do not establish the microanatomic relationships of the ciliary region with any modern degree of accuracy. Nonetheless, ancient authors, such as Galen and Rufus, clearly understood that the lens is located anteriorly. There is little reason to believe that Celsus or other ancient authors held a variant understanding of the anatomy of a healthy eye. The notion of the central location of the lens seems to have arisen with Arabic authors in 9th century Mesopotamia, and lasted for over 7 centuries
Godspell (May 23 -June 4, 1978)
Program for Godspell (May 23 -June 4, 1978)
Small-body deflection techniques using spacecraft: techniques in simulating the fate of ejecta
We define a set of procedures to numerically study the fate of ejecta
produced by the impact of an artificial projectile with the aim of deflecting
an asteroid. Here we develop a simplified, idealized model of impact conditions
that can be adapted to fit the details of specific deflection-test scenarios,
such as what is being proposed for the AIDA project. Ongoing studies based upon
the methodology described here can be used to inform observational strategies
and safety conditions for an observing spacecraft. To account for ejecta
evolution, the numerical strategies we are employing are varied and include a
large N-Body component, a smoothed-particle hydrodynamics (SPH) component, and
an application of impactor scaling laws. Simulations that use SPH-derived
initial conditions show high-speed ejecta escaping at low angles of
inclination, and very slowly moving ejecta lofting off the surface at higher
inclination angles, some of which re-impacts the small-body surface. We are
currently investigating the realism of this and other models' behaviors. Next
steps will include the addition of solar perturbations to the model and
applying the protocol developed here directly to specific potential mission
concepts such as the proposed AIDA scenario.Comment: 19 pages, 11 figures, accepted for publication in Advances in Space
Research, Special Issue: Asteroids & Space Debri
Anticorrelation of net uptake of atmospheric CO2 by the world ocean and terrestrial biosphere in current carbon cycle models
The rate at which atmospheric carbon dioxide (CO2) would decrease in response to a decrease in anthropogenic emissions or cessation (net zero emissions) is of great scientific and societal interest. Such a decrease in atmospheric CO2 on the centennial scale would be due essentially entirely to transfer of carbon into the world ocean (WO) and the terrestrial biosphere (TB), which are sink compartments on this timescale. The rate of decrease in excess atmospheric CO2 and the apportionment of this decrease into the two sink compartments have been examined in two prior model intercomparison studies, subsequent either to a pulse emission of CO2 or to abrupt cessation of anthropogenic CO2 emissions. The present study examines and quantifies inter-model anticorrelation in those studies in the net rate and extent of uptake of CO2 into the two sink compartments. Specifically, in each study the time-dependent coefficients characterizing the net transfer rate into the two sink compartments (evaluated as the net transfer rate normalized to excess atmospheric CO2 above the pre-pulse amount for the pulse experiment or as the net transfer rate divided by excess atmospheric CO2 above the preindustrial amount for the abrupt cessation experiment) were found to exhibit strong anticorrelation across the participating models. That is, models for which the normalized rate of uptake into the WO was high exhibited low uptake rate into the TB and vice versa. This anticorrelation in net transfer rate results in anticorrelation in net uptake extent into the two compartments that is substantially greater than would be expected simply from competition for excess CO2 between the two sink compartments. This anticorrelation, which is manifested in diminished inter-model diversity, can lead to artificially enhanced confidence in current understanding of the consequences of potential future reductions of CO2 emissions and in the global warming potentials of non-CO2 greenhouse gases relative to that of CO2.</p
- …