2,439 research outputs found

    Law Breaking and Law Bending: How International Migrants Negotiate with State Borders

    Get PDF
    Many countries have become increasingly aggressive in their efforts to stop unauthorized migration, but most evidence suggests that immigration enforcement policies do not effectively deter migrants. We draw on literature from social psychology, specifically the dual-system model of decision-making, which differentiates between judgments that are subject to considerations of risks and costs and judgments that are “non-consequentialist.” Non-consequentialist decision-making is founded in moral intuition and rejects rational considerations of costs and benefits. This mental process would render the deterrence tools of the state powerless. We posit that some, but not all, forms of unauthorized migration will invoke non-consequentialist decision-making. When considering semi-legal strategies, which individuals may perceive as “bending the law” rather than breaking it, aspiring migrants are likely to weigh the risks and costs of enforcement policies. Meanwhile, when considering fully illegal migration strategies, aspiring migrants will prioritize moral considerations for breaking the law rather than the consequences of breaking the law. We find evidence for our theory using original population-based list experiments along with focus groups of aspiring migrants in an origin country

    Multivariate discrimination and the Higgs + W/Z search

    Get PDF
    A systematic method for optimizing multivariate discriminants is developed and applied to the important example of a light Higgs boson search at the Tevatron and the LHC. The Significance Improvement Characteristic (SIC), defined as the signal efficiency of a cut or multivariate discriminant divided by the square root of the background efficiency, is shown to be an extremely powerful visualization tool. SIC curves demonstrate numerical instabilities in the multivariate discriminants, show convergence as the number of variables is increased, and display the sensitivity to the optimal cut values. For our application, we concentrate on Higgs boson production in association with a W or Z boson with H -> bb and compare to the irreducible standard model background, Z/W + bb. We explore thousands of experimentally motivated, physically motivated, and unmotivated single variable discriminants. Along with the standard kinematic variables, a number of new ones, such as twist, are described which should have applicability to many processes. We find that some single variables, such as the pull angle, are weak discriminants, but when combined with others they provide important marginal improvement. We also find that multiple Higgs boson-candidate mass measures, such as from mild and aggressively trimmed jets, when combined may provide additional discriminating power. Comparing the significance improvement from our variables to those used in recent CDF and DZero searches, we find that a 10-20% improvement in significance against Z/W + bb is possible. Our analysis also suggests that the H + W/Z channel with H -> bb is also viable at the LHC, without requiring a hard cut on the W/Z transverse momentum.Comment: 41 pages, 5 tables, 29 figure

    Pure Samples of Quark and Gluon Jets at the LHC

    Get PDF
    Having pure samples of quark and gluon jets would greatly facilitate the study of jet properties and substructure, with many potential standard model and new physics applications. To this end, we consider multijet and jets+X samples, to determine the purity that can be achieved by simple kinematic cuts leaving reasonable production cross sections. We find, for example, that at the 7 TeV LHC, the pp {\to} {\gamma}+2jets sample can provide 98% pure quark jets with 200 GeV of transverse momentum and a cross section of 5 pb. To get 10 pb of 200 GeV jets with 90% gluon purity, the pp {\to} 3jets sample can be used. b+2jets is also useful for gluons, but only if the b-tagging is very efficient.Comment: 19 pages, 16 figures; v2 section on formally defining quark and gluon jets has been adde

    Parton Fragmentation within an Identified Jet at NNLL

    Full text link
    The fragmentation of a light parton i to a jet containing a light energetic hadron h, where the momentum fraction of this hadron as well as the invariant mass of the jet is measured, is described by "fragmenting jet functions". We calculate the one-loop matching coefficients J_{ij} that relate the fragmenting jet functions G_i^h to the standard, unpolarized fragmentation functions D_j^h for quark and gluon jets. We perform this calculation using various IR regulators and show explicitly how the IR divergences cancel in the matching. We derive the relationship between the coefficients J_{ij} and the quark and gluon jet functions. This provides a cross-check of our results. As an application we study the process e+ e- to X pi+ on the Upsilon(4S) resonance where we measure the momentum fraction of the pi+ and restrict to the dijet limit by imposing a cut on thrust T. In our analysis we sum the logarithms of tau=1-T in the cross section to next-to-next-to-leading-logarithmic accuracy (NNLL). We find that including contributions up to NNLL (or NLO) can have a large impact on extracting fragmentation functions from e+ e- to dijet + h.Comment: expanded introduction, typos fixed, journal versio

    2015 ACVIM Small Animal Consensus Statement on Seizure Management in Dogs

    Get PDF
    This report represents a scientific and working clinical consensus statement on seizure management in dogs based on current literature and clinical expertise. The goal was to establish guidelines for a predetermined, concise, and logical sequential approach to chronic seizure management starting with seizure identification and diagnosis (not included in this report), reviewing decision‐making, treatment strategies, focusing on issues related to chronic antiepileptic drug treatment response and monitoring, and guidelines to enhance patient response and quality of life. Ultimately, we hope to provide a foundation for ongoing and future clinical epilepsy research in veterinary medicine

    The impact of measurement error in modelled ambient particles exposures on health effect estimates in multi-level analysis: a simulation study.

    Get PDF
    Background: Various spatiotemporal models have been proposed for predicting ambient particulate exposure for inclusion in epidemiological analyses. We investigated the effect of measurement error in the prediction of particulate matter with diameter <10 ”m (PM10) and <2.5 ”m (PM2.5) concentrations on the estimation of health effects. Methods: We sampled 1,000 small administrative areas in London, United Kingdom, and simulated the “true” underlying daily exposure surfaces for PM10 and PM2.5 for 2009–2013 incorporating temporal variation and spatial covariance informed by the extensive London monitoring network. We added measurement error assessed by comparing measurements at fixed sites and predictions from spatiotemporal land-use regression (LUR) models; dispersion models; models using satellite data and applying machine learning algorithms; and combinations of these methods through generalized additive models. Two health outcomes were simulated to assess whether the bias varies with the effect size. We applied multilevel Poisson regression to simultaneously model the effect of long- and short-term pollutant exposure. For each scenario, we ran 1,000 simulations to assess measurement error impact on health effect estimation. Results: For long-term exposure to particles, we observed bias toward the null, except for traffic PM2.5 for which only LUR underestimated the effect. For short-term exposure, results were variable between exposure models and bias ranged from −11% (underestimate) to 20% (overestimate) for PM10 and of −20% to 17% for PM2.5. Integration of models performed best in almost all cases. Conclusions: No single exposure model performed optimally across scenarios. In most cases, measurement error resulted in attenuation of the effect estimate

    Non-global Structure of the O({\alpha}_s^2) Dijet Soft Function

    Full text link
    High energy scattering processes involving jets generically involve matrix elements of light- like Wilson lines, known as soft functions. These describe the structure of soft contributions to observables and encode color and kinematic correlations between jets. We compute the dijet soft function to O({\alpha}_s^2) as a function of the two jet invariant masses, focusing on terms not determined by its renormalization group evolution that have a non-separable dependence on these masses. Our results include non-global single and double logarithms, and analytic results for the full set of non-logarithmic contributions as well. Using a recent result for the thrust constant, we present the complete O({\alpha}_s^2) soft function for dijet production in both position and momentum space.Comment: 55 pages, 8 figures. v2: extended discussion of double logs in the hard regime. v3: minor typos corrected, version published in JHEP. v4: typos in Eq. (3.33), (3.39), (3.43) corrected; this does not affect the main result, numerical results, or conclusion

    Systematic review of antiepileptic drugs’ safety and effectiveness in feline epilepsy

    Get PDF
    Understanding the efficacy and safety profile of antiepileptic drugs (AEDs) in feline epilepsy is a crucial consideration for managing this important brain disease. However, there is a lack of information about the treatment of feline epilepsy and therefore a systematic review was constructed to assess current evidence for the AEDs’ efficacy and tolerability in cats. The methods and materials of our former systematic reviews in canine epilepsy were mostly mirrored for the current systematic review in cats. Databases of PubMed, CAB Direct and Google scholar were searched to detect peer-reviewed studies reporting efficacy and/or adverse effects of AEDs in cats. The studies were assessed with regards to their quality of evidence, i.e. study design, study population, diagnostic criteria and overall risk of bias and the outcome measures reported, i.e. prevalence and 95% confidence interval of the successful and affected population in each study and in total

    Jet Shapes and Jet Algorithms in SCET

    Get PDF
    Jet shapes are weighted sums over the four-momenta of the constituents of a jet and reveal details of its internal structure, potentially allowing discrimination of its partonic origin. In this work we make predictions for quark and gluon jet shape distributions in N-jet final states in e+e- collisions, defined with a cone or recombination algorithm, where we measure some jet shape observable on a subset of these jets. Using the framework of Soft-Collinear Effective Theory, we prove a factorization theorem for jet shape distributions and demonstrate the consistent renormalization-group running of the functions in the factorization theorem for any number of measured and unmeasured jets, any number of quark and gluon jets, and any angular size R of the jets, as long as R is much smaller than the angular separation between jets. We calculate the jet and soft functions for angularity jet shapes \tau_a to one-loop order (O(alpha_s)) and resum a subset of the large logarithms of \tau_a needed for next-to-leading logarithmic (NLL) accuracy for both cone and kT-type jets. We compare our predictions for the resummed \tau_a distribution of a quark or a gluon jet produced in a 3-jet final state in e+e- annihilation to the output of a Monte Carlo event generator and find that the dependence on a and R is very similar.Comment: 62 pages plus 21 pages of Appendices, 13 figures, uses JHEP3.cls. v2: corrections to finite parts of NLO jet functions, minor changes to plots, clarified discussion of power corrections. v3: Journal version. Introductory sections significantly reorganized for clarity, classification of logarithmic accuracy clarified, results for non-Mercedes-Benz configurations adde
    • 

    corecore