17,861 research outputs found

    One-dimensional description of a Bose-Einstein condensate in a rotating closed-loop waveguide

    Full text link
    We propose a general procedure for reducing the three-dimensional Schrodinger equation for atoms moving along a strongly confining atomic waveguide to an effective one-dimensional equation. This procedure is applied to the case of a rotating closed-loop waveguide. The possibility of including mean-field atomic interactions is presented. Application of the general theory to characterize a new concept of atomic waveguide based on optical tweezers is finally discussed

    All-Optical Depletion of Dark Excitons from a Semiconductor Quantum Dot

    Get PDF
    Semiconductor quantum dots are considered to be the leading venue for fabricating on-demand sources of single photons. However, the generation of long-lived dark excitons imposes significant limits on the efficiency of these sources. We demonstrate a technique that optically pumps the dark exciton population and converts it to a bright exciton population, using intermediate excited biexciton states. We show experimentally that our method considerably reduces the DE population while doubling the triggered bright exciton emission, approaching thereby near-unit fidelity of quantum dot depletion.Comment: 5 pages, 3 figure

    Effect of trap symmetry and atom-atom interactions on a trapped atom interferometer with internal state labelling

    Full text link
    In this paper, we study the dynamics of a trapped atom interferometer with internal state labelling in the presence of interactions. We consider two situations: an atomic clock in which the internal states remain superposed, and an inertial sensor configuration in which they are separated. From the average spin evolution, we deduce the fringe contrast and the phase-shift. In the clock configuration, we recover the well-known identical spin rotation effect (ISRE) which can significantly increase the spin coherence time. We also find that the magnitude of the effect depends on the trap geometry in a way that is consistent with our recent experimental results in a clock configuration [M. Dupont-Nivet, and al., New J. Phys., 20, 043051 (2018)], where ISRE was not observed. In the case of an inertial sensor, we show that despite the spatial separation it is still possible to increase the coherence time by using mean field interactions to counteract asymmetries of the trapping potential.Comment: 18 pages, 5 figure

    Modeling urban street patterns

    Full text link
    Urban streets patterns form planar networks whose empirical properties cannot be accounted for by simple models such as regular grids or Voronoi tesselations. Striking statistical regularities across different cities have been recently empirically found, suggesting that a general and details-independent mechanism may be in action. We propose a simple model based on a local optimization process combined with ideas previously proposed in studies of leaf pattern formation. The statistical properties of this model are in good agreement with the observed empirical patterns. Our results thus suggests that in the absence of a global design strategy, the evolution of many different transportation networks indeed follow a simple universal mechanism.Comment: 4 pages, 5 figures, final version published in PR

    Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    Full text link
    We exposed nitrogen-implanted diamonds to beams of swift uranium and gold ions (~1 GeV) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV- centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV- yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV-center formation by swift heavy ions such as electronic excitations and thermal spikes. While forming NV centers with low efficiency, swift heavy ions enable the formation of three dimensional NV- assemblies over relatively large distances of tens of micrometers. Further, our results show that NV-center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.Comment: to be published in Journal of Applied Physic
    corecore