47,878 research outputs found
Development of high resolution imaging detectors for x ray astronomy
This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode
Condensation of Cytidylic Acid in the Presence of Polyphosphoric Acid
Condensation of cytidylic acid in presence of polyphosphoric aci
The quality of price formation at market openings and closings: evidence from the Nasdaq stock market
Central counterparties (CCPs) have increasingly become a cornerstone of financial markets infrastructure. We present a model where trades are time-critical, liquidity is limited and there is limited enforcement of trades. We show a CCP novating trades implements efficient trading behaviour. It is optimal for the CCP to face default losses to achieve the efficient level of trade. To cover these losses, the CCP optimally uses margin calls, and, as the default problem becomes more severe, also requires default funds and then imposes position limits
Effects of low energy electron irradiation on formation of nitrogen-vacancy centers in single-crystal diamond
Exposure to beams of low energy electrons (2 to 30 keV) in a scanning
electron microscope locally induces formation of NV-centers without thermal
annealing in diamonds that have been implanted with nitrogen ions. We find that
non-thermal, electron beam induced NV-formation is about four times less
efficient than thermal annealing. But NV-center formation in a consecutive
thermal annealing step (800C) following exposure to low energy electrons
increases by a factor of up to 1.8 compared to thermal annealing alone. These
observations point to reconstruction of nitrogen-vacancy complexes induced by
electronic excitations from low energy electrons as an NV-center formation
mechanism and identify local electronic excitations as a means for spatially
controlled room-temperature NV-center formation
MeV oxygen ion implantation induced compositional intermixing in AlAs/GaAs superlattices
We present in this letter an investigation of compositional intermixing in AlAs/GaAs superlattices induced by 2 MeV oxygen ion implantation. The results are compared with implantation at 500 keV. In addition to Al intermixing in the direct lattice damage region by nuclear collision spikes, as is normally present in low-energy ion implantation, Al interdiffusion has also been found to take place in the subsurface region where MeV ion induced electronic spike damage dominates and a uniform strain field builds up due to defect generation and diffusion. Uniform compositional intermixing of the superlattices results after subsequent thermal annealing when Al interdiffusion is stimulated through recovery of the implantation-induced lattice strain field, the reconstruction and the redistribution of lattice defects, and annealing of lattice damage
Sneutrino as Lightest Supersymmetric Particle in B3 mSUGRA Models and Signals at the LHC
We consider B3 mSUGRA models where we have one lepton number violating LQD
operator at the GUT scale. This can alter the supersymmetric mass spectrum
leading to a sneutrino as the lightest supersymmetric particle in a large
region of parameter space. We take into account the restrictions from neutrino
masses, the muon anomalous magnetic moment, b -> s gamma and other precision
measurements. We furthermore investigate existing restrictions from direct
searches at LEP, the Tevatron and the CERN p\bar p collider. We then give
examples for characteristic signatures at the LHC.Comment: 22 pages, 11 figure
The nature of the long time decay at a second order transition point
We show that at a second order phase transition, of \phi^4 like system, a
necessary condition for streched exponential decay of the time structure factor
is obeyed. Using the ideas presented in this proof a crude estimate of the
decay of the structure factor is obtained and shown to yield stretched
exponential decay under very reasonable conditions.Comment: 7 page
A Composite Genome Approach to Identify Phylogenetically Informative Data from Next-Generation Sequencing
We have developed a novel method to rapidly obtain homologous genomic data
for phylogenetics directly from next-generation sequencing reads without the
use of a reference genome. This software, called SISRS, avoids the time
consuming steps of de novo whole genome assembly, genome-genome alignment, and
annotation. For simulations SISRS is able to identify large numbers of loci
containing variable sites with phylogenetic signal. For genomic data from apes,
SISRS identified thousands of variable sites, from which we produced an
accurate phylogeny. Finally, we used SISRS to identify phylogenetic markers
that we used to estimate the phylogeny of placental mammals. We recovered
phylogenies from multiple datasets that were consistent with previous
conflicting estimates of the relationships among mammals. SISRS is open source
and freely available at https://github.com/rachelss/SISRS.Comment: 12 pages plus36 figures, 1 supplementary table, 3 supplementary
figure
Preliminary results of the University of California X-ray experiment on the OSO-3
Cosmic and solar X ray data obtained by Orbiting Solar Observatory /OSO-3
Attentional load and sensory competition in human vision: Modulation of fMRI responses by load fixation during task-irrelevant stimulation in the peripheral visual field.
Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex
- …