23,066 research outputs found

    A piezoelectrically actuated ball valve

    Get PDF
    Bimorph strip composed of two layers of poled piezoelectric ceramic material closes and opens valve. Strip performs like capacitator, allowing initial inrush of current when valve is energized and then only small leakage current flows as valve remains energized

    BATSE flare observations in Solar Cycle 22

    Get PDF
    The Hard X-Ray Burst Spectrometer (HXRBS) group at GSFC has developed and is maintaining a quick-look analysis system for solar flare hard x-ray data from the Burst and Transient Source Experiment (BATSE) on the recently launched Compton Gamma-Ray Observatory (GRO). The instrument consists, in part, of 8 large planar detectors, each 2025 sq cm, placed on the corners of the GRO spacecraft with the orientation of the faces being those of a regular octahedron. Although optimized for the detection of gamma-ray bursts, these detectors are far more sensitive than any previous spacecraft-borne hard x-ray flare instrumentation both for the detection of small microflares and the resolution of fine temporal structures. The data in this BATSE solar data base are from the discriminator large area (DISCLA) rates. From each of eight detectors there are hard x-ray data in four energy channels, 25-50, 50-100, 100-300, and greater than 300 keV with a time resolution of 1.024 seconds. These data are suitable for temporal correlation with data at other wavelengths, and they provide a first look into the BATSE and other GRO instrument flare data sets. The BATSE and other GRO principle investigator groups should be contacted for the availability of data sets at higher time or spectral resolution or at higher energies

    Fluctuating epidemics on adaptive networks

    Full text link
    A model for epidemics on an adaptive network is considered. Nodes follow an SIRS (susceptible-infective-recovered-susceptible) pattern. Connections are rewired to break links from non-infected nodes to infected nodes and are reformed to connect to other non-infected nodes, as the nodes that are not infected try to avoid the infection. Monte Carlo simulation and numerical solution of a mean field model are employed. The introduction of rewiring affects both the network structure and the epidemic dynamics. Degree distributions are altered, and the average distance from a node to the nearest infective increases. The rewiring leads to regions of bistability where either an endemic or a disease-free steady state can exist. Fluctuations around the endemic state and the lifetime of the endemic state are considered. The fluctuations are found to exhibit power law behavior.Comment: Submitted to Phys Rev

    Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy

    Full text link
    The lattice Gel'fand-Dikii hierarchy was introduced by Nijhoff, Papageorgiou, Capel and Quispel in 1992 as the family of partial difference equations generalizing to higher rank the lattice Korteweg-de Vries systems, and includes in particular the lattice Boussinesq system. We present a Lagrangian for the generic member of the lattice Gel'fand-Dikii hierarchy, and show that it can be considered as a Lagrangian 2-form when embedded in a higher dimensional lattice, obeying a closure relation. Thus the multiform structure proposed in arXiv:0903.4086v2 [nlin.SI] is extended to a multi-component system.Comment: 12 page

    Accurate Noise Projection for Reduced Stochastic Epidemic Models

    Full text link
    We consider a stochastic Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model. Through the use of a normal form coordinate transform, we are able to analytically derive the stochastic center manifold along with the associated, reduced set of stochastic evolution equations. The transformation correctly projects both the dynamics and the noise onto the center manifold. Therefore, the solution of this reduced stochastic dynamical system yields excellent agreement, both in amplitude and phase, with the solution of the original stochastic system for a temporal scale that is orders of magnitude longer than the typical relaxation time. This new method allows for improved time series prediction of the number of infectious cases when modeling the spread of disease in a population. Numerical solutions of the fluctuations of the SEIR model are considered in the infinite population limit using a Langevin equation approach, as well as in a finite population simulated as a Markov process.Comment: 38 pages, 10 figures, new title, Final revision to appear in Chao

    Discovery of a Jet-Like Structure at the High Redshift QSO CXOMP J084128.3+131107

    Full text link
    The Chandra Multiwavelength Project (ChaMP) has discovered a jet-like structure associated with a newly recognized QSO at redshift z=1.866. The system was 9.4 arcmin off-axis during an observation of 3C 207. Although significantly distorted by the mirror PSF, we use both a raytrace and a nearby bright point source to show that the X-ray image must arise from some combination of point and extended sources, or else from a minimum of three distinct point sources. We favor the former situation, as three unrelated sources would have a small probability of occurring by chance in such a close alignment. We show that interpretation as a jet emitting X-rays via inverse Compton (IC) scattering on the cosmic microwave background (CMB) is plausible. This would be a surprising and unique discovery of a radio-quiet QSO with an X-ray jet, since we have obtained upper limits of 100 microJy on the QSO emission at 8.46 GHz, and limits of 200 microJy for emission from the putative jet.Comment: 12 pages including 4 figures. Accepted for publication by ApJ Letter
    corecore