research

Fluctuating epidemics on adaptive networks

Abstract

A model for epidemics on an adaptive network is considered. Nodes follow an SIRS (susceptible-infective-recovered-susceptible) pattern. Connections are rewired to break links from non-infected nodes to infected nodes and are reformed to connect to other non-infected nodes, as the nodes that are not infected try to avoid the infection. Monte Carlo simulation and numerical solution of a mean field model are employed. The introduction of rewiring affects both the network structure and the epidemic dynamics. Degree distributions are altered, and the average distance from a node to the nearest infective increases. The rewiring leads to regions of bistability where either an endemic or a disease-free steady state can exist. Fluctuations around the endemic state and the lifetime of the endemic state are considered. The fluctuations are found to exhibit power law behavior.Comment: Submitted to Phys Rev

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019
    Last time updated on 27/12/2021