1,499 research outputs found

    Bioavailability of Lycopene from Fresh and Processed Tomatoes

    Get PDF
    Author Institution: Department of Food Science and Technology, The Ohio State Universit

    Estimating error models for whole genome sequencing using mixtures of Dirichlet-multinomial distributions

    Get PDF
    Motivation: Accurate identification of genotypes is an essential part of the analysis of genomic data, including in identification of sequence polymorphisms, linking mutations with disease and determining mutation rates. Biological and technical processes that adversely affect genotyping include copy-number-variation, paralogous sequences, library preparation, sequencing error and reference-mapping biases, among others. Results: We modeled the read depth for all data as a mixture of Dirichlet-multinomial distributions, resulting in significant improvements over previously used models. In most cases the best model was comprised of two distributions. The major-component distribution is similar to a binomial distribution with low error and low reference bias. The minor-component distribution is overdispersed with higher error and reference bias. We also found that sites fitting the minor component are enriched for copy number variants and low complexity regions, which can produce erroneous genotype calls. By removing sites that do not fit the major component, we can improve the accuracy of genotype calls. Availability and Implementation: Methods and data files are available at https://github.com/ CartwrightLab/WuEtAl2017/ (doi:10.5281/zenodo.256858). Contact: [email protected] Supplementary information: Supplementary data is available at Bioinformatics online

    One-Pot 3D Printing of Robust Multimaterial Devices

    Full text link
    Polymer 3D printing is a broad set of manufacturing methods that permit the fabrication of complex architectures, and, as a result, numerous efforts focus on formulating processible chemistries that produce desirable material behavior in printed parts. However, current resin chemistries typically result in a single fixed set of properties once fully polymerized, a fact that poses significant engineering challenges to obtaining multimaterial devices. As an alternative to single-property materials, we introduce a ternary sequential reaction scheme that exhibits diverse multimaterial properties by profoundly altering the polymer microstructure from within a single resin composition. In this system, the photodosage during 3D printing sets both the shape and extent of conversion for each subsequent reaction. This different polymerization mechanisms of the subsequent stages yield disparate crosslink densities and viscoelastic properties. As a result, our materials possess Young's Moduli spanning over three orders of magnitude (400 kPa < E < 1.6 GPa) with smooth transitions between soft and stiff regions. We successfully pattern a 500x change in modulus in under a millimeter while the sequential assembly of our polymer networks ensures robust interfaces and enhances toughness by 10x compared to the single property materials. Most importantly, the final objects remain stable to UV and thermal aging, a key limitation to applications of previous multimaterial chemistries. We demonstrate the ability to 3D print intricate multimaterial architectures by fabricating a soft, wearable braille display.Comment: 54 pages including supplemental information, 5 main text figure

    Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact

    Full text link
    Binary near-Earth asteroid (65803) Didymos is the target of the proposed NASA Double Asteroid Redirection Test (DART), part of the Asteroid Impact & Deflection Assessment (AIDA) mission concept. In this mission, the DART spacecraft is planned to impact the secondary body of Didymos, perturbing mutual dynamics of the system. The primary body is currently rotating at a spin period close to the spin barrier of asteroids, and materials ejected from the secondary due to the DART impact are likely to reach the primary. These conditions may cause the primary to reshape, due to landslides, or internal deformation, changing the permanent gravity field. Here, we propose that if shape deformation of the primary occurs, the mutual orbit of the system would be perturbed due to a change in the gravity field. We use a numerical simulation technique based on the full two-body problem to investigate the shape effect on the mutual dynamics in Didymos after the DART impact. The results show that under constant volume, shape deformation induces strong perturbation in the mutual motion. We find that the deformation process always causes the orbital period of the system to become shorter. If surface layers with a thickness greater than ~0.4 m on the poles of the primary move down to the equatorial region due to the DART impact, a change in the orbital period of the system and in the spin period of the primary will be detected by ground-based measurement.Comment: 8 pages, 7 figures, 2 tables, accepted for publication in MNRA
    corecore