1,311 research outputs found

    Recent charm mixing results from BABAR, Belle, and CDF

    Full text link
    A summary of the results of several recent studies of charm mixing is presented. A number of different methods were used, including the measurement of lifetime ratios for final states of different CP, time dependence of wrong-sign hadronic decays, fits to time-dependent Dalitz plots, and searches for wrong-sign semi-leptonic decays. Taken together, they suggest mixing is of order 1%. The status of searches for indirect CP violation is also reported.Comment: 7 pages, 2 figures, proceedings from PHIPSI0

    Discrete Gravitational Dimensions

    Get PDF
    We study the physics of a single discrete gravitational extra dimension using the effective field theory for massive gravitons. We first consider a minimal discretization with 4D gravitons on the sites and nearest neighbor hopping terms. At the linear level, 5D continuum physics is recovered correctly, but at the non-linear level the theory becomes highly non-local in the discrete dimension. There is a peculiar UV/IR connection, where the scale of strong interactions at high energies is related to the radius of the dimension. These new effects formally vanish in the limit of zero lattice spacing, but do not do so quickly enough to reproduce the continuum physics consistently in an effective field theory up to the 5D Planck scale. Nevertheless, this model does make sense as an effective theory up to energies parametrically higher than the compactification scale. In order to have a discrete theory that appears local in the continuum limit, the lattice action must have interactions between distant sites. We speculate on the relevance of these observations to the construction of finite discrete theories of gravity in four dimensions.Comment: 5 pages, 4 diagrams. Important typos in some equations corrected; conclusion s unchange

    Comparing powder magnetization and transport critical current of Bi,Pb(2223) tapes

    Get PDF
    The magnetic field dependence of the critical current in (Bi,Pb)/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub 10+x/ tapes is compared with the magnetization response of isolated grains extracted from the tapes. Special attention is paid to the low-field behavior. The goal of the experiment is to test the widely-used hypothesis that current paths in these tapes contain both weak- and strong- linked branches, which in low field act in parallel. The data agree with this hypothesis; at temperatures above 50 K the powder magnetization drops off exponentially from the self-field to the irreversibility field, while the transport and magnetization currents in the intact tapes show an extra low-field component. Below 50 K the powder behavior becomes less straightforward, but the parallel-path picture in the tapes still holds

    The State of Self-Organized Criticality of the Sun During the Last 3 Solar Cycles. I. Observations

    Full text link
    We analyze the occurrence frequency distributions of peak fluxes PP, total fluxes EE, and durations TT of solar flares over the last three solar cycles (during 1980--2010) from hard X-ray data of HXRBS/SMM, BATSE/CGRO, and RHESSI. From the synthesized data we find powerlaw slopes with mean values of αP=1.72±0.08\alpha_P=1.72\pm0.08 for the peak flux, αE=1.60±0.14\alpha_E=1.60\pm0.14 for the total flux, and αT=1.98±0.35\alpha_T=1.98\pm0.35 for flare durations. We find a systematic anti-correlation of the powerlaw slope of peak fluxes as a function of the solar cycle, varying with an approximate sinusoidal variation αP(t)=α0+Δαcos⁥[2π(t−t0)/Tcycle]\alpha_P(t)=\alpha_0+\Delta \alpha \cos{[2\pi (t-t_0)/T_{cycle}]}, with a mean of α0=1.73\alpha_0=1.73, a variation of Δα=0.14\Delta \alpha =0.14, a solar cycle period Tcycle=12.6T_{cycle}=12.6 yrs, and a cycle minimum time t0=1984.1t_0=1984.1. The powerlaw slope is flattest during the maximum of a solar cycle, which indicates a higher magnetic complexity of the solar corona that leads to an overproportional rate of powerful flares.Comment: subm. to Solar Physic

    Observation of Target Electron Momentum Effects in Single-Arm M\o ller Polarimetry

    Full text link
    In 1992, L.G. Levchuk noted that the asymmetries measured in M\o ller scattering polarimeters could be significantly affected by the intrinsic momenta of the target electrons. This effect is largest in devices with very small acceptance or very high resolution in laboratory scattering angle. We use a high resolution polarimeter in the linac of the polarized SLAC Linear Collider to study this effect. We observe that the inclusion of the effect alters the measured beam polarization by -14% of itself and produces a result that is consistent with measurements from a Compton polarimeter. Additionally, the inclusion of the effect is necessary to correctly simulate the observed shape of the two-body elastic scattering peak.Comment: 29 pages, uuencoded gzip-compressed postscript (351 kb). Uncompressed postscript file (898 kb) available to DECNET users as SLC::USER_DISK_SLC1:[MORRIS]levpre.p

    Resonant Absorption as Mode Conversion?

    Full text link
    Resonant absorption and mode conversion are both extensively studied mechanisms for wave "absorption" in solar magnetohydrodynamics (MHD). But are they really distinct? We re-examine a well-known simple resonant absorption model in a cold MHD plasma that places the resonance inside an evanescent region. The normal mode solutions display the standard singular resonant features. However, these same normal modes may be used to construct a ray bundle which very clearly undergoes mode conversion to an Alfv\'en wave with no singularities. We therefore conclude that resonant absorption and mode conversion are in fact the same thing, at least for this model problem. The prime distinguishing characteristic that determines which of the two descriptions is most natural in a given circumstance is whether the converted wave can provide a net escape of energy from the conversion/absorption region of physical space. If it cannot, it is forced to run away in wavenumber space instead, thereby generating the arbitrarily small scales in situ that we recognize as fundamental to resonant absorption and phase mixing. On the other hand, if the converted wave takes net energy way, singularities do not develop, though phase mixing may still develop with distance as the wave recedes.Comment: 23 pages, 8 figures, 2 tables; accepted by Solar Phys (July 9 2010

    Surface layering of liquids: The role of surface tension

    Full text link
    Recent measurements show that the free surfaces of liquid metals and alloys are always layered, regardless of composition and surface tension; a result supported by three decades of simulations and theory. Recent theoretical work claims, however, that at low enough temperatures the free surfaces of all liquids should become layered, unless preempted by bulk freezing. Using x-ray reflectivity and diffuse scattering measurements we show that there is no observable surface-induced layering in water at T=298 K, thus highlighting a fundamental difference between dielectric and metallic liquids. The implications of this result for the question in the title are discussed.Comment: 5 pages, 4 figures, to appear in Phys. Rev. B. 69 (2004

    Optical investigation of the charge-density-wave phase transitions in NbSe3NbSe_{3}

    Full text link
    We have measured the optical reflectivity R(ω)R(\omega) of the quasi one-dimensional conductor NbSe3NbSe_{3} from the far infrared up to the ultraviolet between 10 and 300 KK using light polarized along and normal to the chain axis. We find a depletion of the optical conductivity with decreasing temperature for both polarizations in the mid to far-infrared region. This leads to a redistribution of spectral weight from low to high energies due to partial gapping of the Fermi surface below the charge-density-wave transitions at 145 K and 59 K. We deduce the bulk magnitudes of the CDW gaps and discuss the scattering of ungapped free charge carriers and the role of fluctuations effects

    MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements

    Get PDF
    © Author(s) 2014. We present vM21 MIPAS temperatures from the lower stratosphere to the lower thermosphere, which cover all optimized resolution measurements performed by MIPAS in the middle-atmosphere, upper-atmosphere and noctilucent-cloud modes during its lifetime, i.e., from January 2005 to April 2012. The main upgrades with respect to the previous version of MIPAS temperatures (vM11) are the update of the spectroscopic database, the use of a different climatology of atomic oxygen and carbon dioxide, and the improvement in important technical aspects of the retrieval setup (temperature gradient along the line of sight and offset regularizations, apodization accuracy). Additionally, an updated version of ESA-calibrated L1b spectra (5.02/5.06) is used. The vM21 temperatures correct the main systematic errors of the previous version because they provide on average a 1-2 K warmer stratopause and middle mesosphere, and a 6-10 K colder mesopause (except in high-latitude summers) and lower thermosphere. These lead to a remarkable improvement in MIPAS comparisons with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and the two Rayleigh lidars at Mauna Loa and Table Mountain, which, with a few specific exceptions, typically exhibit differences smaller than 1 K below 50 km and than 2 K at 50-80 km in spring, autumn and winter at all latitudes, and summer at low to midlatitudes. Differences in the high-latitude summers are typically smaller than 1 K below 50 km, smaller than 2 K at 50-65 km and 5 K at 65-80 km. Differences between MIPAS and the other instruments in the mid-mesosphere are generally negative. MIPAS mesopause is within 4 K of the other instruments measurements, except in the high-latitude summers, when it is within 5-10 K, being warmer there than SABER, MLS and OSIRIS and colder than ACE-FTS and SOFIE. The agreement in the lower thermosphere is typically better than 5 K, except for high latitudes during spring and summer, when MIPAS usually exhibits larger vertical gradients.M. Garcia-Comas was financially supported by the Ministry of Economy and Competitiveness (MINECO) through its >Ramon y Cajal> subprogram. The IAA team was supported by the Spanish MINECO, through project AYA2011-23552, the CONSOLIDER program CSD2009-00038, and EC FEDER funds. Funding for ACE comes primarily from the Canadian Space Agency. We thank ESA for providing MIPAS level-1b data.Peer Reviewe
    • 

    corecore