869 research outputs found

    Predicting unobserved exposures from seasonal epidemic data

    Get PDF
    We consider a stochastic Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model with a contact rate that fluctuates seasonally. Through the use of a nonlinear, stochastic projection, we are able to analytically determine the lower dimensional manifold on which the deterministic and stochastic dynamics correctly interact. Our method produces a low dimensional stochastic model that captures the same timing of disease outbreak and the same amplitude and phase of recurrent behavior seen in the high dimensional model. Given seasonal epidemic data consisting of the number of infectious individuals, our method enables a data-based model prediction of the number of unobserved exposed individuals over very long times.Comment: 24 pages, 6 figures; Final version in Bulletin of Mathematical Biolog

    Maximal Sensitive Dependence and the Optimal Path to Epidemic Extinction

    Get PDF
    Extinction of an epidemic or a species is a rare event that occurs due to a large, rare stochastic fluctuation. Although the extinction process is dynamically unstable, it follows an optimal path that maximizes the probability of extinction. We show that the optimal path is also directly related to the finite-time Lyapunov exponents of the underlying dynamical system in that the optimal path displays maximum sensitivity to initial conditions. We consider several stochastic epidemic models, and examine the extinction process in a dynamical systems framework. Using the dynamics of the finite-time Lyapunov exponents as a constructive tool, we demonstrate that the dynamical systems viewpoint of extinction evolves naturally toward the optimal path.Comment: 21 pages, 5 figures, Final revision to appear in Bulletin of Mathematical Biolog

    Distributed allocation of mobile sensing swarms in gyre flows

    Get PDF
    We address the synthesis of distributed control policies to enable a swarm of homogeneous mobile sensors to maintain a desired spatial distribution in a geophysical flow environment, or workspace. In this article, we assume the mobile sensors (or robots) have a "map" of the environment denoting the locations of the Lagrangian coherent structures or LCS boundaries. Based on this information, we design agent-level hybrid control policies that leverage the surrounding fluid dynamics and inherent environmental noise to enable the team to maintain a desired distribution in the workspace. We establish the stability properties of the ensemble dynamics of the distributed control policies. Since realistic quasi-geostrophic ocean models predict double-gyre flow solutions, we use a wind-driven multi-gyre flow model to verify the feasibility of the proposed distributed control strategy and compare the proposed control strategy with a baseline deterministic allocation strategy. Lastly, we validate the control strategy using actual flow data obtained by our coherent structure experimental testbed.Comment: 10 pages, 14 Figures, added reference

    Noise, Bifurcations, and Modeling of Interacting Particle Systems

    Full text link
    We consider the stochastic patterns of a system of communicating, or coupled, self-propelled particles in the presence of noise and communication time delay. For sufficiently large environmental noise, there exists a transition between a translating state and a rotating state with stationary center of mass. Time delayed communication creates a bifurcation pattern dependent on the coupling amplitude between particles. Using a mean field model in the large number limit, we show how the complete bifurcation unfolds in the presence of communication delay and coupling amplitude. Relative to the center of mass, the patterns can then be described as transitions between translation, rotation about a stationary point, or a rotating swarm, where the center of mass undergoes a Hopf bifurcation from steady state to a limit cycle. Examples of some of the stochastic patterns will be given for large numbers of particles

    A Framework for Inferring Unobserved Multistrain Epidemic Subpopulations Using Synchronization Dynamics

    Get PDF
    A new method is proposed to infer unobserved epidemic subpopulations by exploiting the synchronization properties of multistrain epidemic models. A model for dengue fever is driven by simulated data from secondary infective populations. Primary infective populations in the driven system synchronize to the correct values from the driver system. Most hospital cases of dengue are secondary infections, so this method provides a way to deduce unobserved primary infection levels. We derive center manifold equations that relate the driven system to the driver system and thus motivate the use of synchronization to predict unobserved primary infectives. Synchronization stability between primary and secondary infections is demonstrated through numerical measurements of conditional Lyapunov exponents and through time series simulations

    Escape Rates in a Stochastic Environment with Multiple Scales

    Full text link
    We consider a stochastic environment with two time scales and outline a general theory that compares two methods to reduce the dimension of the original system. The first method involves the computation of the underlying deterministic center manifold followed by a naive replacement of the stochastic term. The second method allows one to more accurately describe the stochastic effects and involves the derivation of a normal form coordinate transform that is used to find the stochastic center manifold. The results of both methods are used along with the path integral formalism of large fluctuation theory to predict the escape rate from one basin of attraction to another. The general theory is applied to the example of a surface flow described by a generic, singularly perturbed, damped, nonlinear oscillator with additive, Gaussian noise. We show how both nonlinear reduction methods compare in escape rate scaling. Additionally, the center manifolds are shown to predict high pre-history probability regions of escape. The theoretical results are confirmed using numerical computation of the mean escape time and escape prehistory, and we briefly discuss the extension of the theory to stochastic control.Comment: 32 pages, 8 figures, Final revision to appear in SIAM Journal on Applied Dynamical System

    Converging towards the optimal path to extinction

    Full text link
    Extinction appears ubiquitously in many fields, including chemical reactions, population biology, evolution, and epidemiology. Even though extinction as a random process is a rare event, its occurrence is observed in large finite populations. Extinction occurs when fluctuations due to random transitions act as an effective force which drives one or more components or species to vanish. Although there are many random paths to an extinct state, there is an optimal path that maximizes the probability to extinction. In this article, we show that the optimal path is associated with the dynamical systems idea of having maximum sensitive dependence to initial conditions. Using the equivalence between the sensitive dependence and the path to extinction, we show that the dynamical systems picture of extinction evolves naturally toward the optimal path in several stochastic models of epidemics.Comment: 18 pages, 5 figures, Final revision in Journal of the Royal Society Interface. arXiv admin note: substantial text overlap with arXiv:1003.091
    corecore