4 research outputs found

    Therapeutic drug monitoring of amlodipine and the Z-FHL/HHL ratio: Adherence tools in patients referred for apparent treatment-resistant hypertension

    Get PDF
    Background. Non-adherence to antihypertensives is a cause of ‘pseudo-treatment-resistant’ hypertension. Objective. To determine whether monitoring plasma amlodipine concentrations and inhibition of angiotensin-converting enzyme (ACE) can be adjunct adherence tools. Methods. Patients with hypertension who were prescribed enalapril and amlodipine were enrolled. Blood pressures (BPs) were monitored and an adherence questionnaire was completed. Steady-state amlodipine was assayed using liquid chromatography-mass spectrometry and degree of ACE inhibition using the Z-FHL/HHL (z-phenylalanine-histidine-leucine/hippuryl-histidine-leucine) ratio. Results. One hundred patients (mean (standard deviation) age 50.5 (12) years, 46% male) were enrolled. Based on plasma assays, 26/97 patients (26.8%) were unsuppressed by enalapril and 20/100 (20%) were sub-therapeutic for amlodipine. There were significant BP differences based on plasma levels of the medication: 21/20 mmHg lower in the group with suppressed ACE and 26/20 mmHg in the group with steady-state amlodipine concentrations. Conclusions. Monitoring antihypertensive adherence by assaying plasma medication concentrations is a feasible option for evaluating true v. pseudo-resistant hypertension.S Afr Med J 2017;107(10):887-89

    Structural basis for the inhibition of human angiotensin-1 converting enzyme by fosinoprilat

    No full text
    Human angiotensin-I converting enzyme (ACE) has two isoforms, somatic ACE (sACE) and testis ACE (tACE). The functions of sACE are widespread, with its involvement in blood pressure regulation most extensively studied. sACE is composed of an N-domain (nACE) and a C-domain (cACE), both catalytically active but have significant structural differences, resulting in different substrate specificities. Even though ACE inhibitors are used clinically, they need much improvement because of serious side effects seen in patients (~25-30%) with long-term treatment due to non-selective inhibition of nACE and cACE. Investigation into the distinguishing structural features of each domain is therefore of vital importance for the development of domain-specific inhibitors with minimal side effects. Here we report kinetic data and high resolution crystal structures of both nACE (1.75 Å) and cACE (1.85 Å) in complex with fosinoprilat, a clinically used inhibitor. These structures allowed detailed analysis of the molecular features conferring domain selectivity by fosinoprilat. Particularly, altered hydrophobic interactions were observed to be a contributing factor. These experimental data contribute to improved understanding of the structural features that dictate ACE inhibitor domain selectivity, allowing further progress towards designing novel 2nd generation domain-specific potent ACE inhibitors suitable for clinical administration, with a variety of potential future therapeutic benefits

    Deglycosylation, processing and crystallization of human testis angiotensin-converting enzyme.

    No full text
    Angiotensin I-converting enzyme (ACE) is a highly glycosylated type I integral membrane protein. A series of underglycosylated testicular ACE (tACE) glycoforms, lacking between one and five N-linked glycosylation sites, were used to assess the role of glycosylation in tACE processing, crystallization and enzyme activity. Whereas underglycosylated glycoforms showed differences in expression and processing, their kinetic parameters were similar to that of native tACE. N-glycosylation of Asn-72 or Asn-109 was necessary and sufficient for the production of enzymically active tACE but glycosylation of Asn-90 alone resulted in rapid intracellular degradation. All mutants showed similar levels of phorbol ester stimulation and were solubilized at the same juxtamembrane cleavage site as the native enzyme. Two mutants, tACEDelta36-g1234 and -g13, were successfully crystallized, diffracting to 2.8 and 3.0 A resolution respectively. Furthermore, a truncated, soluble tACE (tACEDelta36NJ), expressed in the presence of the glucosidase-I inhibitor N -butyldeoxynojirimycin, retained the activity of the native enzyme and yielded crystals belonging to the orthorhombic P2(1)2(1)2(1) space group (cell dimensions, a=56.47 A, b=84.90 A, c=133.99 A, alpha=90 degrees, beta=90 degrees and gamma=90 degrees ). These crystals diffracted to 2.0 A resolution. Thus underglycosylated human tACE mutants, lacking O-linked oligosaccharides and most N-linked oligosaccharides or with only simple N-linked oligosaccharides attached throughout the molecule, are suitable for X-ray diffraction studies
    corecore