2,179 research outputs found
Autowaves in a dc complex plasma confined behind a de Laval nozzle
Experiments to explore stability conditions and topology of a dense
microparticle cloud supported against gravity by a gas flow were carried out.
By using a nozzle shaped glass insert within the glass tube of a dc discharge
plasma chamber a weakly ionized gas flow through a de Laval nozzle was
produced. The experiments were performed using neon gas at a pressure of 100 Pa
and melamine-formaldehyde particles with a diameter of 3.43 {\mu}m. The
capturing and stable global confining of the particles behind the nozzle in the
plasma were demonstrated. The particles inside the cloud behaved as a single
convection cell inhomogeneously structured along the nozzle axis in a tube-like
manner. The pulsed acceleration localized in the very head of the cloud
mediated by collective plasma-particle interactions and the resulting wave
pattern were studied in detail.Comment: 6 pages, 4 figure
Particle-resolved study of the onset of turbulence
The transition from laminar to turbulent flow is an immensely important topic
that is still being studied. Here we show that complex plasmas, i.e.,
microparticles immersed in a low temperature plasma, make it possible to study
the particle-resolved onset of turbulence under the influence of damping, a
feat not possible with conventional systems. We performed three-dimensional
(3D) molecular dynamics (MD) simulations of complex plasmas flowing past an
obstacle and observed 3D turbulence in the wake and fore-wake region of this
obstacle. We found that we could reliably trigger the onset of turbulence by
changing key parameters such as the flow speed and particle charge, which can
be controlled in experiments, and show that the transition to turbulence
follows the conventional pathway involving the intermittent emergence of
turbulent puffs. The power spectra for fully developed turbulence in our
simulations followed the -5/3 power law of Kolmogorovian turbulence in both
time and space. We demonstrate that turbulence in simulations with damping
occurs after the formation of shock fronts, such as bow shocks and Mach cones.
By reducing the strength of damping in the simulations, we could trigger a
transition to turbulence in an undamped system. This work opens the pathway to
detailed experimental and simulation studies of the onset of turbulence on the
level of the carriers of the turbulent interactions, i.e., the microparticles.Comment: 6 pages, 5 figure
Ordering of small particles in one-dimensional coherent structures by time-periodic flows
Small particles transported by a fluid medium do not necessarily have to
follow the flow. We show that for a wide class of time-periodic incompressible
flows inertial particles have a tendency to spontaneously align in
one-dimensional dynamic coherent structures. This effect may take place for
particles so small that often they would be expected to behave as passive
tracers and be used in PIV measurement technique. We link the particle tendency
to form one-dimensional structures to the nonlinear phenomenon of phase
locking. We propose that this general mechanism is, in particular, responsible
for the enigmatic formation of the `particle accumulation structures'
discovered experimentally in thermocapillary flows more than a decade ago and
unexplained until now
Width of Sunspot Generating Zone and Reconstruction of Butterfly Diagram
Based on the extended Greenwich-NOAA/USAF catalogue of sunspot groups it is
demonstrated that the parameters describing the latitudinal width of the
sunspot generating zone (SGZ) are closely related to the current level of solar
activity, and the growth of the activity leads to the expansion of SGZ. The
ratio of the sunspot number to the width of SGZ shows saturation at a certain
level of the sunspot number, and above this level the increase of the activity
takes place mostly due to the expansion of SGZ. It is shown that the mean
latitudes of sunspots can be reconstructed from the amplitudes of solar
activity. Using the obtained relations and the group sunspot numbers by Hoyt
and Schatten (1998), the latitude distribution of sunspot groups ("the Maunder
butterfly diagram") for the 18th and the first half of the 19th centuries is
reconstructed and compared with historical sunspot observations.Comment: 16 pages, 11 figures; accepted by Solar Physics; the final
publication will be available at www.springerlink.co
Dynamical mean-field theory of indirect magnetic exchange
To analyze the physical properties arising from indirect magnetic exchange
between several magnetic adatoms and between complex magnetic nanostructures on
metallic surfaces, the real-space extension of dynamical mean-field theory
(R-DMFT) appears attractive as it can be applied to systems of almost arbitrary
geometry and complexity. While R-DMFT describes the Kondo effect of a single
adatom exactly, indirect magnetic (RKKY) exchange is taken into account on an
approximate level only. Here, we consider a simplified model system consisting
of two magnetic Hubbard sites ("adatoms") hybridizing with a non-interacting
tight-binding chain ("substrate surface"). This two-impurity Anderson model
incorporates the competition between the Kondo effect and indirect exchange but
is amenable to an exact numerical solution via the density-matrix
renormalization group (DMRG). The particle-hole symmetric model at half-filling
and zero temperature is used to benchmark R-DMFT results for the magnetic
coupling between the two adatoms and for the magnetic properties induced in the
substrate. In particular, the dependence of the local adatom and the nonlocal
adatom-adatom static susceptibilities as well as the magnetic response of the
substrate on the distance between the adatoms and on the strength of their
coupling with the substrate is studied. We find both, excellent agreement with
the DMRG data even on subtle details of the competition between RKKY exchange
and the Kondo effect but also complete failure of the R-DMFT, depending on the
parameter regime considered. R-DMFT calculations are performed using the
Lanczos method as impurity solver. With the real-space extension of the
two-site DMFT, we also benchmark a simplified R-DMFT variant.Comment: 14 pages, 8 figure
Mechanical modulation of single-electron tunneling through molecular-assembled metallic nanoparticles
We present a microscopic study of single-electron tunneling in nanomechanical
double-barrier tunneling junctions formed using a vibrating scanning nanoprobe
and a metallic nanoparticle connected to a metallic substrate through a
molecular bridge. We analyze the motion of single electrons on and off the
nanoparticle through the tunneling current, the displacement current and the
charging-induced electrostatic force on the vibrating nanoprobe. We demonstrate
the mechanical single-electron turnstile effect by applying the theory to a
gold nanoparticle connected to the gold substrate through alkane dithiol
molecular bridge and probed by a vibrating platinum tip.Comment: Accepted by Phys. Rev.
Measurement of the speed of sound by observation of the Mach cones in a complex plasma under microgravity conditions
We report the first observation of the Mach cones excited by a larger
microparticle (projectile) moving through a cloud of smaller microparticles
(dust) in a complex plasma with neon as a buffer gas under microgravity
conditions. A collective motion of the dust particles occurs as propagation of
the contact discontinuity. The corresponding speed of sound was measured by a
special method of the Mach cone visualization. The measurement results are
incompatible with the theory of ion acoustic waves. The estimate for the
pressure in a strongly coupled Coulomb system and a scaling law for the complex
plasma make it possible to derive an evaluation for the speed of sound, which
is in a reasonable agreement with the experiments in complex plasmas.Comment: 5 pages, 2 figures, 1 tabl
Magnetic properties of the Kagom mixed compounds CoxNi1 x 3V2O8
The magnetic properties of the mixed compounds CoxNi1 x 3 V2O8 CNVO investigated by magnetization and neutron diffraction measurements are presented. Unlike their parent compounds Ni3V2O8 NVO and Co3V2O8 CVO , only one magnetic phase transition into an antiferromagnetic phase was detected for powder samples with x 0.27, 0.52, and 0.76. The magnetic structures are modulated according to a propagation vector k delta,0,0 with delta being dependent on the composition parameter x. Furthermore, magnetization data of a CVO single crystal is featured, which is qualitatively different from previous publications and exhibits a controversial aspect concerning the behavior of the curve under an applied magnetic field along the b axi
- …