4,253 research outputs found

    Momentum-resolved evolution of the Kondo lattice into 'hidden-order' in URu2Si2

    Full text link
    We study, using high-resolution angle-resolved photoemission spectroscopy, the evolution of the electronic structure in URu2Si2 at the Gamma, Z and X high-symmetry points from the high-temperature Kondo-screened regime to the low-temperature `hidden-order' (HO) state. At all temperatures and symmetry points, we find structures resulting from the interaction between heavy and light bands, related to the Kondo lattice formation. At the X point, we directly measure a hybridization gap of 11 meV already open at temperatures above the ordered phase. Strikingly, we find that while the HO induces pronounced changes at Gamma and Z, the hybridization gap at X does not change, indicating that the hidden-order parameter is anisotropic. Furthermore, at the Gamma and Z points, we observe the opening of a gap in momentum in the HO state, and show that the associated electronic structure results from the hybridization of a light electron band with the Kondo-lattice bands characterizing the paramagnetic state.Comment: Updated published version. Mansucript + Supplemental Material (8 pages, 9 figures). Submitted 16 September 201

    Evidence of momentum dependent hybridization in Ce2Co0.8Si3.2

    Full text link
    We studied the electronic structure of the Kondo lattice system Ce2Co0.8Si3.2 by angle-resolved photoemission spectroscopy (ARPES). The spectra obtained below the coherence temperature consist of a Kondo resonance, its spin-orbit partner and a number of dispersing bands. The quasiparticle weight related to the Kondo peak depends strongly on Fermi vectors associated with bulk bands. This indicates a highly anisotropic hybridization between conduction band and 4f electrons - V_{cf} in Ce2Co0.8Si3.2.Comment: 6 page

    Correlated Photon-Pair Emission from a Charged Single Quantum Dot

    Full text link
    The optical creation and recombination of charged biexciton and trion complexes in an (In,Ga)As/GaAs quantum dot is investigated by micro-photoluminescence spectroscopy. Photon cross-correlation measurements demonstrate the temporally correlated decay of charged biexciton and trion states. Our calculations provide strong evidence for radiative decay from the excited trion state which allows for a deeper insight into the spin configurations and their dynamics in these systems.Comment: 5 pages, 3 figures, submitted for publicatio

    Evidence for a Soft Nuclear Equation-of-State from Kaon Production in Heavy Ion Collisions

    Full text link
    The production of pions and kaons has been measured in Au+Au collisions at beam energies from 0.6 to 1.5 AGeV with the Kaon Spectrometer at SIS/GSI. The K+ meson multiplicity per nucleon is enhanced in Au+Au collisions by factors up to 6 relative to C+C reactions whereas the corresponding pion ratio is reduced. The ratio of the K+ meson excitation functions for Au+Au and C+C collisions increases with decreasing beam energy. This behavior is expected for a soft nuclear equation-of-state.Comment: 14 pages, 2 figures, accepted for publication in Phys. Rev. Let

    Production of Charged Pions, Kaons and Antikaons in Relativistic C+C and C+Au Collisions

    Full text link
    Production cross sections of charged pions, kaons and antikaons have been measured in C+C and C+Au collisions at beam energies of 1.0 and 1.8 AGeV for different polar emission angles. The kaon and antikaon energy spectra can be described by Boltzmann distributions whereas the pion spectra exhibit an additional enhancement at low energies. The pion multiplicity per participating nucleon M(pi+)/A_part is a factor of about 3 smaller in C+Au than in C+C collisions at 1.0 AGeV whereas it differs only little for the C and the Au target at a beam energy of 1.8 AGeV. The K+ multiplicities per participating nucleon M(K+)/A_part are independent of the target size at 1 AGeV and at 1.8 AGeV. The K- multiplicity per participating nucleon M(K-)/A_part is reduced by a factor of about 2 in C+Au as compared to C+C collisions at 1.8 AGeV. This effect might be caused by the absorption of antikaons in the heavy target nucleus. Transport model calculations underestimate the K-/K+ ratio for C+C collisions at 1.8 AGeV by a factor of about 4 if in-medium modifications of K mesons are neglected.Comment: 19 pages, 14 figures, accepted for publication in Eur. Phys. J.

    K+ and K- production in heavy-ion collisions at SIS-energies

    Full text link
    The production and the propagation of K+ and of K- mesons in heavy-ion collisions at beam energies of 1 to 2 AGeV have systematically been investigated with the Kaon Spectrometer KaoS at the SIS at the GSI. The ratio of the K+ production excitation function for Au+Au and for C+C reactions increases with decreasing beam energy, which is expected for a soft nuclear equation-of-state. At 1.5 AGeV a comprehensive study of the K+ and of the K- emission as a function of the size of the collision system, of the collision centrality, of the kaon energy, and of the polar emission angle has been performed. The K-/K+ ratio is found to be nearly constant as a function of the collision centrality. The spectral slopes and the polar emission patterns are different for K- and for K+. These observations indicate that K+ mesons decouple earlier from the reaction zone than K- mesons.Comment: invited talk given at the SQM2003 conference in Atlantic Beach, USA (March 2003), to be published in Journal of Physics G, 10pages, 7 figure
    corecore