7,547 research outputs found

    Determination of |V_us| from hadronic tau decays

    Full text link
    The recent update of the strange spectral function and the moments of the invariant mass distribution by the OPAL collaboration from hadronic tau decay data are employed to determine |V_us| as well as m_s. Our result, |V_us|=0.2208\pm0.0034, is competitive to the standard extraction of |V_us| from K_e3 decays and to the new proposals to determine it. Furthermore, the error associated to our determination of |V_us| can be reduced in the future since it is dominated by the experimental uncertainty that will be eventually much improved by the B-factories hadronic tau data. Another improvement that can be performed is the simultaneous fit of both |V_us| and m_s to a set of moments of the hadronic tau decays invariant mass distribution, which will provide even a more accurate determination of both parameters.Comment: 6 pages. Invited talk given by E.G. at the XXXXth Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, 5-12 Mar 200

    From the rodent spinal cord injury model to human application: Promises and challenges

    Full text link

    Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator

    Get PDF
    We study theoretically the dynamics of a hybrid optomechanical system consisting of a macroscopic mechanical membrane magnetically coupled to a spinor Bose-Einstein condensate via a nanomagnet attached at the membrane center. We demonstrate that this coupling permits us to monitor indirectly the center-of-mass position of the membrane via measurements of the spin of the condensed atoms. These measurements normally induce a significant backaction on the membrane motion, which we quantify for the cases of thermal and coherent initial states of the membrane. We discuss the possibility of measuring this quantum backaction via repeated measurements. We also investigate the potential to generate nonclassical states of the membrane, in particular Schrödinger-cat states, via such repeated measurements

    Stochastic heating of a molecular nanomagnet

    Full text link
    We study the excitation dynamics of a single molecular nanomagnet by static and pulsed magnetic fields. Based on a stability analysis of the classical magnetization dynamics we identify analytically the fields parameters for which the energy is stochastically pumped into the system in which case the magnetization undergoes diffusively and irreversibly a large angle deflection. An approximate analytical expression for the diffusion constant in terms of the fields parameters is given and assessed by full numerical calculations.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    Crossover from diffusive to non-diffusive dynamics in the two-dimensional electron gas with Rashba spin-orbit coupling

    Full text link
    We present the calculation of the density matrix response function of the two-dimensional electron gas with Rashba spin-orbit interaction, which is applicable in a wide range of parameters covering the diffusive and non-diffusive, the dirty and the clean limits. A description of the crossover between the different regimes is thus provided as well. On the basis of the derived microscopic expressions we study the propagating charge and spin-polarization modes in the clean, non-diffusive regime, which is accessible in the modern experiments.Comment: 8 pages, 6 figures, a considerable extension of the first versio

    Quantum measurement backaction from a BEC coupled to a mechanical oscillator

    Full text link
    We study theoretically the dynamics of a a hybrid optomechanical system consisting of a macroscopic mechanical membrane magnetically coupled to a spinor Bose-Einstein condensate via a nanomagnet attached at the membrane center. We demonstrate that this coupling permits us to monitor indirectly the center-of-mass position of the membrane via measurements of the spin of the condensed atoms. These measurements normally induce a significant backaction on the membrane motion, which we quantify for the cases of thermal and coherent initial states of the membrane. We discuss the possibility of measuring that quantum backaction via repeated measurements. We also investigate the potential to generate non-classical states of the membrane, in particular Schrodinger cat states, via such repeated measurements.Comment: 14 pages, 4 figures. Submitted to PR

    Nogo-a regulates neural precursor migration in the embryonic mouse cortex

    Get PDF
    Although Nogo-A has been intensively studied for its inhibitory effect on axonal regeneration in the adult central nervous system, little is known about its function during brain development. In the embryonic mouse cortex, Nogo-A is expressed by radial precursor/glial cells and by tangentially migrating as well as postmigratory neurons. We studied radially migrating neuroblasts in wild-type and Nogo-A knockout (KO) mouse embryos. In vitro analysis showed that Nogo-A and its receptor components NgR, Lingo-1, TROY, and p75 are expressed in cells emigrating from embryonic forebrain-derived neurospheres. Live imaging revealed an increased cell motility when Nogo-A was knocked out or blocked with antibodies. Antibodies blocking NgR or Lingo-1 showed the same motility-enhancing effect supporting a direct role of surface Nogo-A on migration. Bromodeoxyuridine (BrdU) labeling of embryonic day (E)15.5 embryos demonstrated that Nogo-A influences the radial migration of neuronal precursors. At E17.5, the normal transient accumulation of radially migrating precursors within the subventricular zone was not detectable in the Nogo-A KO mouse cortex. At E19, migration to the upper cortical layers was disturbed. These findings suggest that Nogo-A and its receptor complex play a role in the interplay of adhesive and repulsive cell interactions in radial migration during cortical developmen

    Statistical mechanics of transcription-factor binding site discovery using Hidden Markov Models

    Full text link
    Hidden Markov Models (HMMs) are a commonly used tool for inference of transcription factor (TF) binding sites from DNA sequence data. We exploit the mathematical equivalence between HMMs for TF binding and the "inverse" statistical mechanics of hard rods in a one-dimensional disordered potential to investigate learning in HMMs. We derive analytic expressions for the Fisher information, a commonly employed measure of confidence in learned parameters, in the biologically relevant limit where the density of binding sites is low. We then use techniques from statistical mechanics to derive a scaling principle relating the specificity (binding energy) of a TF to the minimum amount of training data necessary to learn it.Comment: 25 pages, 2 figures, 1 table V2 - typos fixed and new references adde

    Dissipation in nanocrystalline-diamond nanomechanical resonators

    Get PDF
    We have measured the dissipation and frequency of nanocrystalline-diamond nanomechanical resonators with resonant frequencies between 13.7 MHz and 157.3 MHz, over a temperature range of 1.4–274 K. Using both magnetomotive network analysis and a time-domain ring-down technique, we have found the dissipation in this material to have a temperature dependence roughly following T^(0.2), with Q^(–1) ≈ 10^(–4) at low temperatures. The frequency dependence of a large dissipation feature at ~35–55 K is consistent with thermal activation over a 0.02 eV barrier with an attempt frequency of 10 GHz

    Tailored quantum dots for entangled photon pair creation

    Full text link
    We compare the asymmetry-induced exchange splitting delta_1 of the bright-exciton ground-state doublet in self-assembled (In,Ga)As/GaAs quantum dots, determined by Faraday rotation, with its homogeneous linewidth gamma, obtained from the radiative decay in time-resolved photoluminescence. Post-growth thermal annealing of the dot structures leads to a considerable increase of the homogeneous linewidth, while a strong reduction of the exchange splitting is simultaneously observed. The annealing can be tailored such that delta_1 and gamma become comparable, whereupon the carriers are still well confined. This opens the possibility to observe polarization entangled photon pairs through the biexciton decay cascade.Comment: 4 pages, 4 figure
    • …
    corecore