15 research outputs found

    Autism spectrum disorders in children and adolescents with Moebius sequence

    Full text link
    Moebius sequence is a rare congenital disorder usually defined as a combination of facial weakness with impairment of ocular abduction. A strong association of Moebius sequence with autism spectrum disorders (ASDs) has been suggested in earlier studies with heterogenous age groups. The primary caregivers of all children and adolescents with Moebius sequence aged 6–17 years known to the German Moebius foundation were anonymously asked to complete two screening measures of ASD [Behavior and Communication Questionnaire (VSK); Marburger Asperger’s Syndrome Rating Scale (MBAS)]. For those who reached the cut-off for ASD, well standardized diagnostic instruments (Autism Diagnostic Interview-Revised, Autism Diagnostic Observation Schedule, WISC-III, and Kinder-DIPS) should be administered. Minimal diagnostic criteria for Moebius sequence were congenital facial weakness (uni- or bilateral) and impairment of ocular abduction (uni- or bilateral). Familiar cases should be excluded. The primary caregivers of 35/46 children and adolescents (18 males, 17 females, mean age 11.5 years) sent back completed questionnaires, but only 27 subjects met inclusion criteria. According to the primary caregivers, none of these subjects showed mental retardation. Two probands (both males 9 and 16 years old) reached the cut-off of the MBAS whereas the results of the VSK did not indicate ASDs in any of the patients. The 9 year old boy could be examined personally and did not meet diagnostic criteria of ASD. ASDs might be not as frequent as reported in previous studies on patients with Moebius sequence, at least not in patients without mental retardation

    Clinical and neurocognitive outcome in symptomatic isovaleric acidemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite its first description over 40 years ago, knowledge of the clinical course of isovaleric acidemia (IVA), a disorder predisposing to severe acidotic episodes during catabolic stress, is still anecdotal. We aimed to investigate the phenotypic presentation and factors determining the neurological and neurocognitive outcomes of patients diagnosed with IVA following clinical manifestation.</p> <p>Methods</p> <p>Retrospective data on 21 children and adults with symptomatic IVA diagnosed from 1976 to 1999 were analyzed for outcome determinants including age at diagnosis and number of catabolic episodes. Sixteen of 21 patients were evaluated cross-sectionally focusing on the neurological and neurocognitive status. Additionally, 155 cases of patients with IVA published in the international literature were reviewed and analyzed for outcome parameters including mortality.</p> <p>Results</p> <p>57% of study patients (12/21) were diagnosed within the first weeks of life and 43% (9/21) in childhood. An acute metabolic attack was the main cause of diagnostic work-up. 44% of investigated study patients (7/16) showed mild motor dysfunction and only 19% (3/16) had cognitive deficits. No other organ complications were found. The patients' intelligence quotient was not related to the number of catabolic episodes but was inversely related to age at diagnosis. In published cases, mortality was high (33%) if associated with neonatal diagnosis, following manifestation at an average age of 7 days.</p> <p>Conclusions</p> <p>Within the group of "classical" organic acidurias, IVA appears to be exceptional considering its milder neuropathologic implications. The potential to avoid neonatal mortality and to improve neurologic and cognitive outcome under early treatment reinforces IVA to be qualified for newborn screening.</p

    Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis

    Get PDF
    Selenium-binding protein 1 (SELENBP1) has been associated with several cancers, although its exact role is unknown. We show that SELENBP1 is a methanethiol oxidase (MTO), related to the MTO in methylotrophic bacteria, that converts methanethiol to H2O2, formaldehyde, and H2S, an activity not previously known to exist in humans. We identified mutations in SELENBP1 in five patients with cabbage-like breath odor. The malodor was attributable to high levels of methanethiol and dimethylsulfide, the main odorous compounds in their breath. Elevated urinary excretion of dimethylsulfoxide was associated with MTO deficiency. Patient fibroblasts had low SELENBP1 protein levels and were deficient in MTO enzymatic activity; these effects were reversed by lentivirus-mediated expression of wild-type SELENBP1. Selenbp1-knockout mice showed biochemical characteristics similar to those in humans. Our data reveal a potentially frequent inborn error of metabolism that results from MTO deficiency and leads to a malodor syndrome

    Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis

    Get PDF
    Selenium-binding protein 1 (SELENBP1) has been associated with several cancers, although its exact role is unknown. We show that SELENBP1 is a methanethiol oxidase (MTO), related to the MTO in methylotrophic bacteria, that converts methanethiol to H2O2, formaldehyde, and H2S, an activity not previously known to exist in humans. We identified mutations in SELENBP1 in five patients with cabbage-like breath odor. The malodor was attributable to high levels of methanethiol and dimethylsulfide, the main odorous compounds in their breath. Elevated urinary excretion of dimethylsulfoxide was associated with MTO deficiency. Patient fibroblasts had low SELENBP1 protein levels and were deficient in MTO enzymatic activity; these effects were reversed by lentivirus-mediated expression of wild-type SELENBP1. Selenbp1-knockout mice showed biochemical characteristics similar to those in humans. Our data reveal a potentially frequent inborn error of metabolism that results from MTO deficiency and leads to a malodor syndrome.info:eu-repo/semantics/publishedVersio

    Exercise intolerance, muscle pain and lactic acidaemia associated with a 7497G>A mutation in the tRNASer(UCN) gene.

    No full text
    Item does not contain fulltextA 13-year-old girl with non-familial exercise intolerance, muscle pain and lactic acidaemia underwent a muscle biopsy for suspected mitochondrial disease. Muscle morphology showed 25% ragged-red fibres and 80% COX-negative staining. Enzymatic activities of mitochondrially co-encoded respiratory chain enzymes (complexes I, III, and IV) were decreased in muscle but normal in cultured skin fibroblasts. mtDNA analysis revealed the presence of the 7497G>A mutation in the tRNASer(UCN) gene, homoplasmic in skeletal muscle and 90% in leukocytes. Analysis of the mother's mtDNA showed 10% heteroplasmy in blood. It may be concluded that the 7497G>A mutation is associated with a muscle-only disease presentation for which high levels of mutated mtDNA are required. Exercise intolerance and muscle pain in otherwise normal children warrants further mitochondrial evaluation

    Functional redundancy of mitochondrial enoyl-CoA isomerases in the oxidation of unsaturated fatty acids

    Full text link
    Mitochondrial enoyl-CoA isomerase (ECI1) is an auxiliary enzyme involved in unsaturated fatty acid oxidation. In contrast to most of the other enzymes involved in fatty acid oxidation, a deficiency of ECI1 has yet to be identified in humans. We used wild-type (WT) and Eci1-deficient knockout (KO) mice to explore a potential presentation of human ECI1 deficiency. Upon food withdrawal, Eci1-deficient mice displayed normal blood β-hydroxybutyrate levels (WT 1.09 mM vs. KO 1.10 mM), a trend to lower blood glucose levels (WT 4.58 mM vs. KO 3.87 mM, P=0.09) and elevated blood levels of unsaturated acylcarnitines, in particular C12:1 acylcarnitine (WT 0.03 μM vs. KO 0.09 μM, P<0.01). Feeding an olive oil-rich diet induced an even greater increase in C12:1 acylcarnitine levels (WT 0.01 μM vs. KO 0.04 μM, P<0.01). Overall, the phenotypic presentation of Eci1-deficient mice is mild, possibly caused by the presence of a second enoyl-CoA isomerase (Eci2) in mitochondria. Knockdown of Eci2 in Eci1-deficient fibroblasts caused a more pronounced accumulation of C12:1 acylcarnitine on incubation with unsaturated fatty acids (12-fold, P<0.05). We conclude that Eci2 compensates for Eci1 deficiency explaining the mild phenotype of Eci1-deficient mice. Hypoglycemia and accumulation of C12:1 acylcarnitine might be diagnostic markers to identify ECI1 deficiency in humans.-van Weeghel, M., te Brinke, H., van Lenthe, H., Kulik, W., Minkler, P. E., Stoll, M. S. K., Sass, J. O., Janssen, U., Stoffel, W., Schwab, O. K., Wanders, R. J. A., Hoppel, C. L., Houten, S. M. Functional redundancy of mitochondrial enoyl-CoA isomerases in the oxidation of unsaturated fatty acids
    corecore