293 research outputs found

    The P2X7 Receptor Supports Both Life and Death in Fibrogenic Pancreatic Stellate Cells

    Get PDF
    The pancreatic stellate cells (PSCs) have complex roles in pancreas, including tissue repair and fibrosis. PSCs surround ATP releasing exocrine cells, but little is known about purinergic receptors and their function in PSCs. Our aim was to resolve whether PSCs express the multifunctional P2X7 receptor and elucidate how it regulates PSC viability. The number of PSCs isolated from wild type (WT) mice was 50% higher than those from the Pfizer P2X7 receptor knock out (KO) mice. The P2X7 receptor protein and mRNA of all known isoforms were expressed in WT PSCs, while KO PSCs only expressed truncated versions of the receptor. In culture, the proliferation rate of the KO PSCs was significantly lower. Inclusion of apyrase reduced the proliferation rate in both WT and KO PSCs, indicating importance of endogenous ATP. Exogenous ATP had a two-sided effect. Proliferation of both WT and KO cells was stimulated with ATP in a concentration-dependent manner with a maximum effect at 100 µM. At high ATP concentration (5 mM), WT PSCs, but not the KO PSCs died. The intracellular Ca(2+) signals and proliferation rate induced by micromolar ATP concentrations were inhibited by the allosteric P2X7 receptor inhibitor az10606120. The P2X7 receptor-pore inhibitor A438079 partially prevented cell death induced by millimolar ATP concentrations. This study shows that ATP and P2X7 receptors are important regulators of PSC proliferation and death, and therefore might be potential targets for treatments of pancreatic fibrosis and cancer

    Ion channels in control of pancreatic stellate cell migration

    Get PDF
    Pancreatic stellate cells (PSCs) play a critical role in the progression of pancreatic ductal adenocarcinoma (PDAC). Once activated, PSCs support proliferation and metastasis of carcinoma cells. PSCs even co-metastasise with carcinoma cells. This requires the ability of PSCs to migrate. In recent years, it has been established that almost all “hallmarks of cancer” such as proliferation or migration/invasion also rely on the expression and function of ion channels. So far, there is only very limited information about the function of ion channels in PSCs. Yet, there is growing evidence that ion channels in stromal cells also contribute to tumor progression. Here we investigated the function of K(Ca)3.1 channels in PSCs. K(Ca)3.1 channels are also found in many tumor cells of different origin. We revealed the functional expression of K(Ca)3.1 channels by means of Western blot, immunofluorescence and patch clamp analysis. The impact of K(Ca)3.1 channel activity on PSC function was determined with live-cell imaging and by measuring the intracellular Ca2(+) concentration ([Ca(2+)](i)). K(Ca)3.1 channel blockade or knockout prevents the stimulation of PSC migration and chemotaxis by reducing the [Ca(2+)](i) and calpain activity. K(Ca)3.1 channels functionally cooperate with TRPC3 channels that are upregulated in PDAC stroma. Knockdown of TRPC3 channels largely abolishes the impact of K(Ca)3.1 channels on PSC migration. In summary, our results clearly show that ion channels are crucial players in PSC physiology and pathophysiology

    Precise radial velocities of giant stars XIII. A second Jupiter orbiting in 4:3 resonance in the 7 CMa system

    Full text link
    We report the discovery of a second planet orbiting the K giant star 7 CMa based on 166 high-precision radial velocities obtained with Lick, HARPS, UCLES and SONG. The periodogram analysis reveals two periodic signals of approximately 745 and 980 d, associated to planetary companions. A double-Keplerian orbital fit of the data reveals two Jupiter-like planets with minimum masses mbsini1.9MJm_b\sin i \sim 1.9 \,\mathrm{M_{J}} and mcsini0.9MJm_c\sin i \sim 0.9 \,\mathrm{M_{J}}, orbiting at semi-major axes of ab1.75aua_b \sim 1.75\,\mathrm{au} and ac2.15aua_c \sim 2.15\,\mathrm{au}, respectively. Given the small orbital separation and the large minimum masses of the planets close encounters may occur within the time baseline of the observations, thus, a more accurate N-body dynamical modeling of the available data is performed. The dynamical best-fit solution leads to collision of the planets and we explore the long-term stable configuration of the system in a Bayesian framework, confirming that 13% of the posterior samples are stable for at least 10 Myr. The result from the stability analysis indicates that the two-planets are trapped in a low-eccentricity 4:3 mean-motion resonance. This is only the third discovered system to be inside a 4:3 resonance, making it very valuable for planet formation and orbital evolution models.Comment: Accepted in A&

    A Novel NHE1-Centered Signaling Cassette Drives Epidermal Growth Factor Receptor–Dependent Pancreatic Tumor Metastasis and Is a Target for Combination Therapy

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers principally because of early invasion and metastasis. The epidermal growth factor receptor (EGFR) is essential for PDAC development even in the presence of Kras, but its inhibition with erlotinib gives only a modest clinical response, making the discovery of novel EGFR targets of critical interest. Here, we revealed by mining a human pancreatic gene expression database that the metastasis promoter Na+/H+ exchanger (NHE1) associates with the EGFR in PDAC. In human PDAC cell lines, we confirmed that NHE1 drives both basal and EGF-stimulated three-dimensional growth and early invasion via invadopodial extracellular matrix digestion. EGF promoted the complexing of EGFR with NHE1 via the scaffolding protein Na +/H + exchanger regulatory factor 1, engaging EGFR in a negative transregulatory loop that controls the extent and duration of EGFR oncogenic signaling and stimulates NHE1. The specificity of NHE1 for growth or invasion depends on the segregation of the transient EGFR/Na +/H + exchanger regulatory factor 1/NHE1 signaling complex into dimeric subcomplexes in different lipid raftlike membrane domains. This signaling complex was also found in tumors developed in orthotopic mice. Importantly, the specific NHE1 inhibitor cariporide reduced both three-dimensional growth and invasion independently of PDAC subtype and synergistically sensitized these behaviors to low doses of erlotinib
    corecore