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Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis.
Therapeutic interventions are largely ineffective. A better understanding of the
pathophysiology is required. Ion channels contribute substantially to the “hallmarks of
cancer.” Their expression is dysregulated in cancer, and they are “misused” to drive cancer
progression, but the underlying mechanisms are unclear. Ion channels are located in the
cell membrane at the interface between the intracellular and extracellular space. They
sense and modify the tumor microenvironment which in itself is a driver of PDAC
aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte
concentrations or mechanical stimuli and transduce signals triggered by these
microenvironmental cues through association with intracellular signaling cascades.
While these concepts have been firmly established for other cancers, evidence has
emerged only recently that ion channels are drivers of PDAC aggressiveness.
Particularly, they appear to contribute to two of the characteristic PDAC features: the
massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our
critical review of the literature clearly shows that there is still a remarkable lack of knowledge
with respect to the contribution of ion channels to these two typical PDAC properties. Yet,
we can draw parallels from ion channel research in other fibrotic and inflammatory
diseases. Evidence is accumulating that pancreatic stellate cells express the same
“profibrotic” ion channels. Similarly, it is at least in part known which major ion
channels are expressed in those innate and adaptive immune cells that populate the
PDACmicroenvironment. We explore potential therapeutic avenues derived thereof. Since
drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to
repurpose those in PDAC. The quest for ion channel targets is both motivated and
complicated by the fact that some of the relevant channels, for example, KCa3.1, are
functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will
reveal which arm of the balance we should put our weights on when developing channel-
targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in
(transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) progresses rapidly
once fully developed and can easily overcome current treatment
strategies. The aggressiveness of the disease leads to a disastrous
outcome for patients. The current 5-year survival rate is still less
than 10% (Rawla et al., 2019). This poor prognosis is due to the
absence of clinical symptoms in the early stage combined with the
characteristic properties of PDAC: desmoplasia, early local
invasion and metastasis, immune evasion, and resistance to
radio- and chemotherapy. Desmoplasia involves a strong
reaction of the tumor stroma in which matrix-producing
pancreatic stellate cells (PSCs) play a central role. Mutual
stimulation of tumor, stroma, and immune cells leads, in a
positive feedback cycle, to enhanced growth factor and matrix
production, creating a microenvironment conducive to tumor
growth, migration/invasion of tumor cells into the tumor stroma,
and metastasis (Mahadevan and Von Hoff, 2007; Sperb et al.,
2020). Despite knowledge of many molecular details of PDAC,
the therapeutic benefit derived thereof has been disappointingly
small. Thus, there is an urgent need for novel concepts and
therapeutic targets for the treatment of PDAC.

A promising novel concept is the targeting of ion channels in
cancer. They are a major class of membrane proteins that have the
ability to sense and modify properties of the tumor
microenvironment and transduce signaling cascades triggered
by its constituents. Therefore, they play central roles in signaling
within and among tumor and stromal cells as well as in the
coupling of extracellular events with cellular responses (Djamgoz
et al., 2014). Ion channels are expressed in every cell where they
exert cell-specific functions and housekeeping functions such as
generating the membrane potential which, in turn, is a
prerequisite for many processes such as Ca2+ signaling. Being
the “working horses” of epithelial cells, ion channels are also
essential for the normal function of the exocrine pancreas (e.g.,
Hayashi and Novak, 2013; Wang et al., 2013). Conversely, ion
channel mutations cause hereditary diseases, so-called
channelopathies. The most frequent one in Caucasians is the
mutation of the cystic fibrosis transmembrane conductance
regulator, CFTR, which causes, among others, a hereditary
chronic pancreatitis which is a risk factor for developing
PDAC (Becker et al., 2014).

Reviews from recent years on the role of ion channels in cancer
(Djamgoz et al., 2014; Klumpp et al., 2018; Prevarskaya et al.,
2018; Bulk et al., 2020; Ling and Kalthoff, 2020; Schnipper et al.,
2020) predominantly focused on how ion channels shape the
aggressive cancer cell behavior. However, cancer must be viewed
as a complex tissue composed of different cell types. This is
particularly relevant for PDAC: PSCs and immune cells are
deeply involved in PDAC pathophysiology. PSCs have an
important share in creating a tumor microenvironment in
PDAC that contributes to immune evasion and thereby to the
aggressiveness and therapy refractoriness of the disease (Wang
et al., 2020b; Hessmann et al., 2020; Sperb et al., 2020). So far,
there is still a considerable lack of knowledge on how ion channels
and the (ionic) tumor microenvironment contribute to these
aspects of PDAC pathophysiology. Yet, it has become evident

that the function of ion channels in noncancerous cells has to be
considered, too. Recent work in prostate cancer has started to go
into this direction (Farfariello et al., 2020).

This review will put a special emphasis on the role of ion
channels in stromal and immune cells. We will propose concepts
on how fibrosis and immune evasion could be addressed in
PDAC therapy by ion channel targeting. Due to their location
in the plasma membrane, ion channels are easily accessible and
well-characterized. Drugs targeting those have been in clinical use
since decades. This is clearly exemplified by Na+ channel blockers
acting as local anesthetics, antiarrhythmics, anticonvulsants, and
diuretics. Moreover, there are drugs whose side effects involve ion
channel blockade (e.g., KV11.1 blockade by haloperidol,
fluoxetine, tamoxifen and amitriptyline (Pointer et al., 2017)
or KV10.1 blockade by astemizole or imipramine (García-
Ferreiro et al., 2004)). Other channel-targeting drugs such as
the KCa3.1 blocker senicapoc have gone through phase III clinical
trials (Ataga et al., 2011). The availability of such drugs provides
us with an enormous advantage as they may be repurposed within
the cancer treatment context (Kale et al., 2015). While developing
a new drug “from scratch” takes on average 12 years and costs one
billion dollars, repurposing requires only 2–3 years and 10
million dollars (Zheng et al., 2013).

REGULATION OF PANCREATIC CANCER
CELL BEHAVIOR BY ION CHANNELS

K+ Channels in Pancreatic Cancer Cells
By controlling the flow of potassium ions across the cell
membrane, K+ channels regulate a multitude of processes,
both in healthy and pathological conditions, including cancer
(Huang and Jan, 2014). In proliferating cells, such as cancer cells,
the K+ efflux mediated by K+ channels modulates cancer cell
behavior by 1) providing the electrochemical force needed for the
influx of Ca2+ (e.g., through store-operated Ca2+ channels (Feske
et al., 2015)), which is known to be important for G0/G1 and G1/S
transitions; 2) by transiently hyperpolarizing the membrane
potential, which is also an important feature for cell cycle
progression (Urrego et al., 2014); or by 3) being involved in
cell volume regulation that highly relies on K+ efflux (Hoffmann
et al., 2009). K+ channels may also work in a nonconductive
manner by promoting signal transduction pathways involved in
cell proliferation through interaction with other membrane
proteins such as integrins (see below) (Becchetti et al., 2019).

Voltage-gated K+ channels (KV channels) are a large family of
40 genes grouped into 12 subfamilies. One of their key functions
is the repolarization of the cell membrane potential of excitable
cells (Wulff et al., 2009; Arcangeli and Becchetti, 2017). However,
they are also found in nonexcitable cells where KV channels play
important roles in cell proliferation, Ca2+ signaling, migration,
and cell volume regulation. Moreover, they promote cancer
progression (Huang and Jan, 2014). The involvement of ion
channels in PDAC, such as KV channels, is summarized in
Table 1.

KV1.3 channels: In healthy humans, the KV1.3 channels are
mainly expressed in the central nervous system and in immune
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TABLE 1 | Ion channel expression and their functional role in pancreatic cancer and stellate cells.

Channel Function Reference

K+ channels
KCa3.1 Functional expression in PDAC cell lines and elevated expression in PDAC tissue; cell proliferation Jäger et al. (2004)

Functional expression in PDAC cells; cell migration, proliferation, and invasion Bonito et al. (2016)
Subset of PDAC cell lines: Oxygen consumption, ATP production, and cellular proliferation Kovalenko et al. (2016)
Expression in PSC; migration and chemotaxis, [Ca2+]i signaling, calpain activity, functional
cooperation with TRPC3

Storck et al. (2017)

High expression correlates with poor patient prognosis in PDAC Zaccagnino et al. (2016); Jiang et al.
(2017)

Macrophage infiltration into cancer tissue via a Ca2+-dependent activation of CXCL5-CCL20
secretion by PDAC cells

Jiang et al. (2019)

Kir3.1 Highly expressed in PDAC Brevet et al. (2009).
K2P1.1 (TWIK-1) mRNA up-regulation in PDAC tissue Williams et al. (2013).
K2P2.1 (TREK-1) Expressed in PDAC cells (BxPC-3) Sauter et al. (2016).

Mediates pH-sensitive K+ current
Modulates the membrane potential (Vm)
PSCs: mRNA expression Fels et al. (2016)

K2P3.1 (TASK-1) mRNA down-regulation in tissues from PDAC patients Williams et al. (2013)
KV1.3 Reduced primary tumor weight in vivo by inhibitor clofazimine Zaccagnino et al. (2017)

Decreased expression in PDAC, associated with metastatic tumors Brevet et al. (2009)
Mitochondrial channel
mitoKV1.3

Apoptosis of cancer cells, cancer development, and progression in mouse models of PDAC Leanza et al. (2017) and Zaccagnino et al.
(2017)

KV10.1 (hEAG) Inhibition of channel activity by monoclonal antibodies; inhibition of tumor cell growth in mouse
xenograft model of pancreatic cancer

Gómez-Varela et al. (2007)

KV11.1 (hERG) Expression in PDAC samples Zhou et al. (2012)
Cell growth and invasiveness Feng et al. (2014)
PDAC malignancy in vitro and in vivo; diagnostic and prognostic biomarker Lastraioli et al. (2015)
PDAC cell migration, modulator of f-actin organization, and Ca2+ signaling Manoli et al. (2019)

TRP channels
TRPC1 TGF-β stimulated Ca2+-responses; migration and invasion (BxPc3 cells) Dong et al. (2010)

Mechanosignaling of murine PSC, pressure-dependent PSC activation Fels et al. (2016)
TRPC3 Up-regulated in PDAC stroma; functional cooperation with KCa3.1; PSC migration and

chemotaxis; and Ca2+ signaling
Storck et al. (2017)

TRPC6 PSCs: Cell migration, Ca2+ signaling, and cytokine secretion in hypoxia Nielsen et al. (2017)
TRPM2 SIRT6-elevated ADPr levels increase TRPM2 activation; migration (BxPc3 cells) Bauer et al. (2012) and Lin et al. (2018)
TRPM7 Overexpressed in PDAC tissue; correlated with poor patient survival Rybarczyk et al. (2012)

Overexpression correlates with increased tumor size and advanced tumor stages Yee et al. (2015)
PDAC cell invasion in Panc-1/MiaPaCa2; expression in lymph node metastasis and primary tumor
correlation in human PDAC

Rybarczyk et al. (2017)

TRPM8 Up-regulated in PDAC cell lines and tissue; cell proliferation Yee et al. (2010)
Functional expression in the plasma membrane; cell migration (Panc-1 cells) Cucu et al. (2014)

TRPV1 Overexpressed in PDAC and the involved neurons; potential link to pain intensity reported by
cancer patients

Hartel et al. (2006)

TRPV4 Prolonged high fat/alcohol exposure increases TRPV4 expression in PSCs, fibrosis Zhang et al. (2013)
Pressure-modulated mRNA expression in PSCs Fels et al. (2016)

TRPV6 Up-regulated in pancreatic cancer tissue; affects proliferation, migration, invasion, and apoptosis in
PDAC

Song et al. (2018)

Down-regulated in PDAC cell line and in the tumor epithelium of PDAC tissue Zaccagnino et al. (2016) and Tawfik et al.
(2020)

Loss of function variants linked to early onset chronic pancreatitis (a risk factor for PDAC
development)

Masamune et al. (2020)

Other ion channels
ASICs

ASIC1, ASIC3 Functional (over-)expression in PDAC; [Ca2+]i signaling, EMT, liver and lung metastasis Zhu et al. (2017)
P2X receptors
P2X7 PSC proliferation and death Haanes et al. (2012)

Overexpressed in PDAC cell lines; cell survival, migration, and invasion Giannuzzo et al. (2015)
Tumor growth; PSC number/activity, fibrosis Giannuzzo et al. (2016)

Piezo1 High mRNA levels in PSCs Fels et al. (2016)
PSCs: Ca2+ influx, cytoskeletal architecture, cell invasion, pH-dependent mechanosensation Kuntze et al. (2020)

ORAI1/STIM1 Prosurvival antiapoptotic role by mediating store-operated Ca2+ entry Kondratska et al. (2014)
CaCC (TMEM16A) Functionally overexpressed in human PDAC cells; supports migration, but not proliferation Sauter et al. (2015)

Promotes pathogenesis of acute pancreatitis via IP3R/Ca
2+/NFκB/IL-6 signaling Wang et al. (2020a)

Essential for EGF-induced store-operated Ca2+ entry during pancreatic cancer cell migration;
overexpression correlates with low patient survival probability

Crottès et al. (2019)
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cells (Cahalan and Chandy, 2009). KV1.3 channel expression is
found up-regulated in several PDAC cell lines (Zaccagnino et al.,
2017). Overexpression of the channel is an advantage for cancer
cells to promote proliferation and cell survival. This was
illustrated by targeting PDAC cells with a KV1.3 inhibitor
(clofazimine) which induces apoptosis and reduces the weight
of tumors grown from orthotopically transplanted PDAC cells
(Zaccagnino et al., 2017). KV1.3 is also expressed in the
mitochondria (mitoKV1.3), where it regulates apoptosis in
PDAC cells (Leanza et al., 2017). The above-cited data from
PDAC cell lines, however, differ from those obtained in tissue
samples from PDAC patients where KV1.3 expression is down-
regulated. This down-regulation correlates with metastasis. The
diminished expression of KV1.3 was explained as a result of the
methylation of its promoter (Brevet et al., 2009).

KV10.1 and KV11.1 channels: The EAG family of voltage-
gated K+ channels comprises at least two members, KV10.1
(EAG1) and KV11.1 (hERG1), which are deeply involved in
the regulation of different cancer hallmarks (Pardo and
Stühmer, 2014). These channels have been identified as a
potential target for anticancer therapies (Arcangeli and
Becchetti, 2017; Xu et al., 2018), and both channels are
expressed in PDAC (KV10.1 (Gómez-Varela et al., 2007);
KV11.1 (Feng et al., 2014; Lastraioli et al., 2015)).

In the healthy organism, KV10.1 and KV11.1 are expressed in
excitable cells such as neurons and muscle cells. In addition to its
expression in PDAC, both channels have been detected in many
other tumor cell lines and primary tumors including
neuroblastoma (Meyer and Heinemann, 1998; Pardo et al.,
1999), melanoma (Nilius and Wohlrab, 1992; Meyer et al.,
1999; Gavrilova-Ruch et al., 2002) as well as different tumors
of epithelial origin (Ouadid-Ahidouch et al., 2001; Lastraioli et al.,
2004; Hemmerlein et al., 2006; Ding et al., 2007; Ousingsawat
et al., 2007), and leukemias (Pillozzi et al., 2002). The expression
of KV10.1 seems to correlate with high-grade tumors and may
confer a proliferative advantage for tumor cells (Comes et al.,
2015).

KV11.1 channels are preferentially expressed in cardiac
myocytes and required for the ordered repolarization of
cardiac action potentials. KV11.1 expression in cancer cells has
also been linked to high-grade tumors and has been strongly
implicated in cell proliferation and migration of several cancers
(Comes et al., 2015). KV11.1 expression is elevated in PDAC
tumor cells, in particular in lymph node–positive PDAC (Feng
et al., 2014). In contrast, cells of the tumor stroma and the normal
ductal epithelium do not express KV11.1 (Lastraioli et al., 2015).
KV11.1 supports cancer cell proliferation, vitality, migration, and
invasion also in several PDAC cell lines (J. Feng et al., 2014; E.
Lastraioli et al., 2015; Zhi et al., 2017). It is involved in cell cycle
regulation as KV11.1 silencing promotes cell cycle arrest in the G1

phase (Feng et al., 2014). In primary PDAC cultures, KV11.1
blockage was found to be cytotoxic.

KV11.1 physically and functionally interacts with other plasma
membrane proteins, such as the epidermal growth factor receptor
(EGF-R) and adhesion receptors of the integrin family (Arcangeli
and Becchetti, 2006; Lastraioli et al., 2015), which strongly
contribute to PDAC aggressiveness (Sun et al., 2018). In

addition, EGF-R inhibition represents one of the therapeutic
strategies for nonresectable PDAC (Hessmann et al., 2020).
The interaction between KV11.1 and EGF-R stimulates an
EGF-R–dependent phosphorylation of ERK1 and ERK2, which
are key signaling proteins downstream to EGF-R, and are
involved in cell proliferation (Lastraioli et al., 2015). As stated
in the introduction about K+ channels, KV11.1 modulates cell
proliferation through a conductive mechanism by its impact on
the cell membrane potential (Becchetti et al., 2017). KV11.1 also
regulates cell migratory programs of PDAC cells by modulating
stress fiber dynamics and f-actin organization by its impact on the
intracellular Ca2+ concentration (Manoli et al., 2019). This effect
relies on nonconductive mechanisms and is based on the
formation of a complex with β1 integrins, which leads to the
activation of downstream signaling processes involving paxillin.

KV11.1 is a target for both posttranscriptional and
posttranslational modifications by small noncoding RNA
molecules (miRNAs). miRNAs participate in human
tumorigenesis and/or metastasis because of their ability to
target oncogenes and/or tumor suppressors (Feng et al., 2014).
KV11.1 is a direct target of mir-96 and mir-493 in human PDAC
(Feng et al., 2014; Zhi et al., 2017; Xu et al., 2018), where both
miRNAs are down-regulated. These data are recapitulated in
PDAC cell lines. In vivo and in vitro, mir-96 and mir-493
silencing increases proliferation, migration, and invasion of
PDAC cells, while their overexpression highly suppresses
tumorigenicity and metastasis of PDAC. These observations
suggest that the above miRNAs can work as tumor
suppressors in PDAC in a KV11.1-dependent manner (Feng
et al., 2014; Zhi et al., 2017).

KCa3.1 channels: KCa3.1 channels are functionally expressed
in pancreatic ducts and are part of the transepithelial ion and fluid
transport machinery (Hayashi et al., 2012; Wang et al., 2013).
KCa3.1 channels are found in the luminal and basolateral
membranes in the intercalated and interlobular ducts of the
pancreas (Hayashi and Novak, 2013).

KCa3.1 is one of the first K+ channels that were found to be
massively overexpressed in primary pancreatic cancer samples
and to be functional in several pancreatic cancer cell lines (Jäger
et al., 2004). Such findings were later reproduced by other groups
(Zaccagnino et al., 2016; Jiang et al., 2017, 2019). KCa3.1
expression rises in a stepwise fashion during the
dedifferentitation process from the normal pancreas to PanINs
and PDAC (Jiang et al., 2017). The clinical relevance of this
finding is underscored by the correlation of increased KCa3.1
channel expression and patient prognosis: high KCa3.1 channel
expression is associated with poor patient survival. The predictive
power of KCa3.1 expression is not limited to PDAC. It also applies
to several other cancer entities including, among others, breast
(Faouzi et al., 2016), lung (Bulk et al., 2015), and ovarian cancer
(Zhao et al., 2016).

Mechanistically, KCa3.1 channels regulate pancreatic cancer
cell behavior in several ways. First of all, they provide the
electrochemical driving force needed for Ca2+ entry by
counterbalancing the depolarization of the membrane potential
caused by Ca2+ influx channels such as TRP channels or Cl− efflux
through anion channels. The former has been observed in PSCs
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(Storck et al., 2017) and is known from many immune cells such
as macrophages (Gao et al., 2010) and lymphocytes (see Ion
Channel Involvement in Desmoplasia). The latter appears to be
relevant for pancreatic cancer cells. KCa3.1 channels interact with
the gamma-aminobutyric acid (GABA) receptor subunit pi
(GABRP). Thereby, they maintain the cell membrane potential
and allow efficient Ca2+ signaling to enhance CXCL5-CCL20
secretion. This, in turn, causes macrophage infiltration into the
cancer tissue and tumor growth (Jiang et al., 2019). KCa3.1-
mediated K+ efflux is also necessary for volume dynamics
during the cell cycle (Bonito et al., 2016) and migration.
Accordingly, KCa3.1 can promote tumor progression by
modulating cell proliferation as well as cell migration and
invasion (Schwab et al., 2012; Bonito et al., 2016). Finally,
KCa3.1 channels are not only expressed in the plasma
membrane but also in the inner membrane of mitochondria
(De Marchi et al., 2009). There is indirect evidence that
KCa3.1 channels are also present in the mitochondria of
pancreatic cancer cells and regulate metabolic activity of
mitochondria, potentially by modulating their membrane
potential (Kovalenko et al., 2016). However, the relative
importance of the plasma membrane vs. mitochondrial KCa3.1
channels in regulating the cellular metabolism still remains to be
determined. The common link could be the intracellular Ca2+

concentration, which also affects mitochondrial function
(Delierneux et al., 2020).

K2P channels: There is very limited information about K2P

channels in pancreatic cancer. A systematic review of public
databases identified the up- or down-regulation of K2P1.1 or
K2P3.1 mRNA, respectively. However, these findings were not
complemented by any functional data (Williams et al., 2013).
K2P2.1 modulates migration and proliferation of PDAC cell lines
(Sauter et al., 2016).

TRP Channels in Pancreatic Cancer Cells
TRPM channels: An analysis of published genomic data from
PDAC patients revealed an overexpression and the
occurrence of somatic mutations of TRPM2. Both of them
are negatively correlated with patient survival. TRPM2
overexpression or silencing modulates migration and
proliferation of a PDAC cell line. So far, it remains to be
determined how the somatic mutations of TRPM2 affect
channel activity (Lin et al., 2018).

Similar observations were made for TRPM7. It is
overexpressed in PDAC tissue, and this correlates with poor
patient survival (Rybarczyk et al., 2012; Rybarczyk et al., 2017) as
well as increased tumor size and advanced PDAC stages (Yee
et al., 2015). In the zebra fish model, TRPM7 contributes to the
development of the pancreas and carcinogenesis (Yee et al., 2011).
Somatic TRPM7 mutations have been detected in several cancer
entities (reviewed in Yee (2017)). Their functional significance
has yet to be determined. On the cellular level, TRPM7 regulates
proliferation and cell cycle progression (Yee et al., 2011). In zebra
fish, the defects in cell cycle progression of the trpm7b508 mutants
can be partially rescued by supplementary Mg2+ (Yee et al., 2011).
TRPM7 knockdown reduces PDAC cell chemotaxis and invasion
(Yee et al., 2015), at least in part by regulating the intracellular

Mg2+ homeostasis and via the Hsp90α/uPA/MMP-2 proteolytic
axis (Rybarczyk et al., 2012, Rybarczyk et al., 2017).

TRPM8 is also overexpressed in human PDAC compared to
normal tissue and required for cell proliferation (Yee et al., 2010).
PDAC cells express functional TRPM8 channels as shown
by whole-cell patch-clamp experiments. Channel activation
inhibits PDAC cell motility (Cucu et al., 2014). Moreover,
TRPM8 silencing increases the sensitivity to gemcitabine (Liu
et al., 2018).

TRPV6: The high Ca2+ selectivity is a distinguishing feature
of TRPV6 (and TRPV5) channels (Fecher-Trost et al., 2017). So
far, there are only very few publications on TRPV6 channels in
pancreas physiology and pathophysiology. Immunohistochemistry
revealed their expression in acinar cells (Zhuang et al., 2002). A
transcriptomic analysis indicates however that they are expressed at
higher levels in the ductal epithelium (Segerstolpe et al., 2016).

Overexpression of TRPV6 appears to be common in cancers of
epithelial origin. Thus, its tumor-promoting role in prostate
cancer is well established (Raphaël et al., 2014). However,
there is a controversy with respect to TRPV6 expression in
PDAC. While Song et al. (2018) reported an overexpression,
we found a reduced expression in microdissected PDAC samples
(Zaccagnino et al., 2016). However, both of these studies did not
take into account whether the tissue samples were from invasive
or noninvasive parts of the tumor. This is a relevant distinction: A
preponderance of TRPV6 expression was shown for the invasive
parts of breast cancer (Dhennin-Duthille et al., 2011). Loss-of-
function variants of TRPV6 channels are linked to another
pancreas pathology: Early onset chronic pancreatitis
(Masamune et al., 2020). We already mentioned in the
introduction that an early onset (hereditary) chronic
pancreatitis, which can also be caused by a mutation of the
CFTR channel, leads to an increased risk to develop PDAC
(Becker et al., 2014). The potential clinical relevance of TRPV6
channels in PDAC is further underpinned by observations from a
phase I dose escalation study with the TRPV6 inhibitor SOR-C13
in cancer patients. Stable disease and a reduction in the CA 19-9
tumor biomarker were observed in both PDAC patients
participating in this study (Fu et al., 2017).

Cl− Channels in Pancreatic Cancer Cells
ANO1 (TMEM16A) is a Ca2+-activated Cl− channel (CaCC). In
freshly isolated murine pancreatic acini, HCO3

− exits the cells
through the apical ANO1 channel, which controls luminal pH
balance. Luminal pH may be perturbed by the exocytotic release
of the acid content of zymogen granules, both under physiologic
condition and upon supramaximal stimulation, which represents
an in vitromodel of acute pancreatitis (Han et al., 2016). In acute
pancreatitis, IL-6 promotes ANO1 expression via IL-6R/STAT3
signaling. ANO1 overexpression, in turn, increases IL-6 secretion
via IP3R/Ca

2+/NFκB signaling activation (Wang et al., 2020a).
Thus, ANO1 appears to be involved in a positive feedback loop in
this inflammatory disorder.

CFTR and ANO1 are highly expressed in Capan-1 cells, where
they mediate ATP/UTP-regulated Cl− secretion (Wang et al.,
2013). ANO1 is overexpressed in several PDAC cell lines when its
expression is compared to that in HDPE cells which are suggested
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to represent a model of the normal human pancreatic ductal
epithelium (Sauter et al., 2015). Indeed, the analysis of patient
material shows that ANO1 mRNA and protein are up-regulated
in 75% of the cases. This is associated with a poor probability of
survival (Crottès et al., 2019).

An EGFR-related signaling pathway, requiring ANO1,
regulates Cl− and Ca2+ homeostasis in pancreatic cancer cells.
This EGF-induced store-operated Ca2+ entry is required for the
migration of pancreatic cancer cells (Crottès et al., 2019).
Interestingly, ANO1 has a promigratory role in PDAC cells
but has no effect on cell proliferation. Whole-cell patch-clamp
experiments reveal functional ANO1 as a major mediator of
PDAC CaCC currents. While knockdown of ANO1 using siRNA
nearly completely abolishes the CaCC-mediated currents, the
three tested ANO1 inhibitors T16Ainh-A01, CaCCinh-A01, and
NS3728 show unspecific side effects and limited specificity
(Sauter et al., 2015).

ION CHANNEL INVOLVEMENT IN
DESMOPLASIA

Fibrosis is a pathological outcome common for many chronic
inflammatory diseases including chronic pancreatitis (Wynn and
Ramalingam, 2012). The abundant stroma reaction

(desmoplasia) is a hallmark common to both chronic
pancreatitis and PDAC (Haeberle et al., 2018). Chronic
pancreatitis is considered a risk factor for pancreatic cancer,
and indeed, it frequently evolves to a true PDAC (McKay
et al., 2008). In both cases, the normal pancreatic parenchyma
is markedly remodeled (as shown in Figure 1) so that the normal
organ function is eventually lost. The poorly vascularized
desmoplastic tissue is characterized by high stiffness, low
elasticity, and high tissue pressure (up to 100 mmHg)
(Stylianopoulos et al., 2012; Fels et al., 2016; Pethő et al.,
2019), which leads to impaired perfusion of the tumor tissue
with the further result of tissue hypoxia. The pancreatic stellate
cells (PSCs) are believed to be the key effectors behind the stroma
deposition in PDAC and chronic pancreatitis (Haeberle et al.,
2018). Desmoplasia represents an important challenge that new
PDAC therapies have to deal with (Henke et al., 2020). The
absence of vascularization combined with vessel compression
because of the massive fibrosis prevents the efficient delivery of
the chemotherapeutic drugs (Dauer et al., 2018).

Consequently, new strategies targeting the stroma
compartment have emerged. This includes the attempt to
attenuate/reverse the activation of the cancer-associated
fibroblasts (CAFs) which also includes PSCs. The results of
these studies however are contradictory. Inhibiting the TGF-β
signaling pathway with the anticancer compound Minnelide,

FIGURE 1 | (A) Histomorphology of a healthy human pancreas, hematoxylin and eosin (H&E). The parenchymal structure of the organ is clearly visible. Acinar cells
are identifiable by their typical round shape. Their bases are stained in blue due to the presence of the nuclei, while their apices are pink due to the high concentration of
zymogen. Two islets are located in the central and right parts of the image. The cytoplasm of the islet cells is paler than the surrounding acinar cells. (B)Histomorphology
of a chronic pancreatitis, hematoxylin and eosin (H&E). The tissue is characterized by an evident increase in interlobular fibrosis, atrophy of the acini, and
inflammatory infiltrate, which is evident when compared to the healthy component of the same sample (inset). (C,D) Histomorphology of two human pancreatic ductal
adenocarcinomas (PDACs), hematoxylin and eosin (H&E). The normal architecture of the parenchyma is lost. Multiple layers of cells highlight the neoplastic lesions in
panel (C). High levels of desmoplasia (colored in pink) are present especially in panel (D). Distribution of different cell populations is detectable in the tumor tissue;
neoplastic cells (pointed by black arrows) are embedded in a dense desmoplastic stroma (pointed by yellow arrows). Evident immune cells infiltration (pointed by red
arrows) is present on the right side of the figure. Immune cells are identifiable by their small sizes and the intense basophilic staining of the nuclei. Scale bars: 100 μm.
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which is able to reverse the activation state of the CAFs, has a
similar positive effect in a murine PDAC model (Dauer et al.,
2018) as the inhibition of hedgehog signaling in CAFs with IPI-
926. Moreover, IPI-926 also increases the delivery and the efficacy
of gemcitabine in mice (Olive et al., 2011). However, other studies
highlighted that an uncontrolled depletion of the stroma
compartment rather promotes PDAC progression than
slowing it down (Özdemir et al., 2014). Consequently, the
understanding of the stromal compartment in PDAC has to
be further refined. It has become apparent that cancer-
associated fibroblasts constitute a heterogeneous cell
population with distinct gene expression profiles, location
within the tumor, and function (Von Ahrens et al., 2017;
Öhlund et al., 2017; Miyai et al., 2020). Öhlund et al. propose
a distinction between inflammatory fibroblasts, mainly
responsible for the secretion of inflammatory factors, and
myofibroblasts that are responsible for the ECM production
(Öhlund et al., 2017). PSCs are included in this last category.
To the best of our knowledge, it has not yet been studied whether
these two types of CAFs are also equipped with distinct sets of ion
channels.

Pancreatic Stellate Cells
In a healthy pancreas, PSCs are usually kept in a quiescent
state, and they are responsible for the maintenance of the tissue
integrity by regulating the ECM turnover (Haeberle et al.,
2018). In PDAC, PSCs become strongly activated by the
secretome and the physicochemical properties of the PDAC
microenvironment (Omary et al., 2007a). Thus, PSCs are
activated among others by inflammatory mediators, growth
factors (PDGF and TGF-β1), cytokines (IL-1, IL-6, and IL-8),
hormones, angiotensin II, intracellular signaling molecules,
and reactive oxygen species (ROS) as well as hypoxia (Nielsen
et al., 2017) and mechanical stimuli (Omary et al., 2007b; Fels
et al., 2016, Fels et al., 2018; Ferdek and Jakubowska, 2017;
Lachowski et al., 2017). Activated PSCs, in turn, secrete growth
factors themselves so that they are engaged in a mutual positive
feedback loop of other cells of the PDAC tissue (Fu et al.,
2018). In addition, activated PSCs proliferate, migrate (Omary
et al., 2007b), and secrete copious amounts of ECM
components, especially collagen I and III (Ferdek and
Jakubowska, 2017). The resulting changes in the pH values
and increased stiffness of the desmoplastic tissue also feed back
onto the behavior of PSCs (Lachowski et al., 2017). One of the
mechanosensitive ion channels, Piezo1, that senses the
mechanical properties of the PDAC microenvironment is
inhibited by an acidic pH. This could prevent PSCs to be
overridden by the mechanically triggered Ca2+ influx via
Piezo1 channels (Kuntze et al., 2020).

Ion Channels and Fibrosis
The function of ion channels in tumor stroma cells is far from
being fully understood, especially regarding PDAC.
Nonetheless, we already know that some ion channels play
a significant role in the development of fibrosis in other organs
such as KCa3.1 in lungs, kidneys (Roach et al., 2013), and heart
(Zhao et al., 2015); K2P2.1 in cardiac fibrosis (Abraham et al.,

2018); and TRPV4 in liver (Songa et al., 2014), heart (Adapala
et al., 2013), and lung fibrosis (Rahaman et al., 2014). Usually
the inhibition of these ion channels attenuates the profibrotic
response of the fibroblasts (Cruse et al., 2011; Adapala et al.,
2013; Rahaman et al., 2014; Abraham et al., 2018; Roach and
Bradding, 2019).

Ion channel research in PSCs is still in its infancy. We will
therefore draw some analogies from hepatic stellate cells that are
closely related to PSCs and in which these ion channels may play
a similar role. Hepatic stellate cells are responsible for matrix
homeostasis in healthy livers (Puche et al., 2013). Similar to the
PSCs in PDAC, they are mainly responsible for the excessive
production and remodeling of the ECM in the fibrotic liver
(Puche et al., 2013; Freise et al., 2015; Ezhilarasan et al., 2018).
For this reason, these types of cells have been suggested as a
possible target for antifibrotic therapy.

KCa3.1: We do not have much information on the role of
KCa3.1 channels in PDAC-associated fibrosis, which is largely
driven by PSCs. It is only known that KCa3.1 channels regulate
migration of PSCs (Storck et al., 2017).

So far, it is under debate whether KCa3.1 has pro- or
antifibrotic effects in the liver (Roach and Bradding, 2019).
KCa3.1 expression is increased in hepatic stellate cells after the
incubation with TGF-β, a known activator of hepatic stellate cells.
In both in vitro and in vivo experiments, the inhibition of KCa3.1
shows an antifibrotic effect and decreases the expression of
profibrotic genes (Freise et al., 2015). On the contrary, in the
work of Møller et al., the inhibition or the absence of KCa3.1 in
hepatic stellate cells and hepatocytes worsens liver fibrosis
(Møller et al., 2016). This information highlights the possible
problems that ion channel therapies could face; the inhibition of
an ion channel expressed in different cell types could have
different effects.

K2P2.1: So far, we only know that PSCs express K2P2.1
(previously designated as TWIK-related potassium channel-1;
TREK1) (Fels et al., 2016). In fact, K2P2.1 is a mechanosensitive
ion channel that can be modulated by pressure and membrane
stretch (Lauritzen et al., 2005; Honoré, 2007) but also by pH.
K2P2.1 contributes to setting the resting membrane potential of
the cells (Bittner et al., 2014), and it is strongly correlated with
proliferation and cell cycle in some tumors (Pethő et al., 2019).
The mechanosensitive function of K2P2.1 is postulated to be
involved in the migration, especially in the coordination of the
front and rear ends of the cells (Pethő et al., 2019). Sauter et al.
observed that the activation of K2P2.1 with BL 1249 in a PDAC
line, BxPC-3, inhibits cell proliferation andmigration through the
hyperpolarization of the membrane (Sauter et al., 2016).
Controversially, the absence of K2P2.1 in heart myofibroblasts
from pressure-overloaded mice attenuates cardiac fibrosis also by
decreasing fibroblast proliferation and migration (Abraham et al.,
2018). This highlights again how the same ion channel can have a
different impact on the behavior of different cell types and how
this topic must be considered during the development of new
therapies. However, it may also be seen as an indication that the
“natural,” possibly fluctuating, activity is what matters
physiologically. Clamping channel activity to a maximum or a
minimum impairs cell function. It remains to be seen whether
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K2P2.1 channels exert a similar role in PDAC desmoplasia, where
the unique tumor microenvironment could influence K2P2.1
function in many ways.

TRPV4: The transient receptor potential vanilloid channel 4
(TRPV4) is a mechanosensitive Ca2+-permeable nonselective
cation channel that is expressed in many organs including the
pancreas (Zhan and Li, 2018). TRPV4 is also expressed in PSCs.
Its mRNA expression strongly decreases in PSCs when they are
cultured under an elevated ambient pressure (+100 mmHg),
mimicking the conditions that can be found in PDAC (Fels
et al., 2016; Pethő et al., 2019; Sharma et al., 2019). The

functional implications of this mechanosensitive expression
have not yet been published. The decreased TRPV4 mRNA
expression upon mechanical stimulation can be explained as a
compensatory response of the cells which prevents Ca2+ overload
following the pressure stimulus (Fels et al., 2016).

Notably, PSCs also release TGF-β upon stimulation with
pressure (Sakata et al., 2004; Fels et al., 2016). TRPV4
integrates mechanical stimuli and soluble signals such as TGF-
β, and it drives the epithelial–mesenchymal transition (EMT)
(Adapala et al., 2013; Sharma et al., 2019). TRPV4 expression is
dramatically increased in many tissue samples of patients with

TABLE 2 | Ion channel expression and function in innate and adaptive immune cells of pancreatic ductal adenocarcinoma.

Channel Function Reference

Neutrophils
KCa3.1 Chemotaxis Henríquez et al. (2016)
Kir2.1 Possible role in neutrophil proliferation, membrane potential regulation, and Ca2+ influx Masia et al. (2015)
KV1.3 Membrane potential regulation and electric field detection Kindzelskii and Petty (2005)
TRPC1 fMLF-stimulated migration and chemotaxis Lindemann et al. (2015)
TRPC6 Chemotaxis and CXCL1-induced recruitment from the vasculature Lindemann et al. (2013) and Lindemann et al. (2020)
TRPM2 In vitro transmigration Yamamoto et al. (2008)
P2X7 IL-1β secretion Karmakar et al. (2016)
HV1 Ca2+ entry regulation, ROS production, and neutrophil migration El Chemaly et al. (2010)

Ramsey et al. (2009)
Monocytes/macrophages
KCa3.1 M1 polarization Xu et al. (2017)
K2P6.1 Inflammasome formation Di et al. (2018)
TRPC1 M1 polarization Chauhan et al. (2018)
TRPM2 Chemokine production Yamamoto et al. (2008)
TRPM7 Ca2+-induced macrophage stimulation, proliferation, and M2 polarization Schilling et al. (2014) and Schappe et al. (2018)
HV1 Phagosomal pH regulation and ROS production El Chemaly et al. (2014)

Dendritic cells
KV1.3, KV1.5 MHCII expression, migration, and cytokine production Matzner et al. (2008)
NaV1.7 Migration Zsiros et al. (2009)
P2X7 Antigen presentation and migration Mutini et al. (1999) and Saéz et al. (2017)
HV1 ROS production Szteyn et al. (2012)

Myeloid-derived suppressor cells (MDSCs)
TRPV1 Promotes MDSC formation Hegde et al. (2011)
P2X7 ARG-1, TGF- β1, and ROS up-regulation Bianchi et al. (2014)

NK cells
KCa3.1 Negatively influencing proliferation, degranulation, and cytotoxicity Koshy et al. (2013)
KV1.3 Positively influencing proliferation and degranulation Koshy et al. (2013)

CD4+ and CD8+ T-cells
KCa3.1 Sustaining Ca2+ influx during T-cell activation Ghanshani et al. (2000) and Wulff et al. (2003)
KV1.3 Sustaining Ca2+ influx during T-cell activation Wulff et al. (2003)
TRPM4 Motility and cytokine production Weber et al. (2010)
CRACa Ca2+ influx during T-cell activation Feske et al. (2012)

Tregs
KCa3.1 Still unclear Estes et al. (2008)
KV1.3 Still unclear Varga et al. (2009)
CRACb Development and differentiation Vaeth et al. (2019)

B cells
KCa3.1 Sustaining Ca2+ influx during B-cell activation Wulff et al. (2004)
KV1.3 Sustaining Ca2+ influx during B-cell activation Wulff et al. (2004)
CRACc Ca2+ influx during B-cell activation Feske et al. (2012)

aMurine T-cells: mRNA and fluorescence-based data indicate that T-cells up-regulateOrai1 and down-regulateOrai2when they become activated (Vaeth et al., 2017). The role ofOrai3 is
controversial (McCarl et al., 2010; Vaeth et al., 2017).
Human peripheral T-cells: the dominant isoform isOrai1, but all the three genes are up-regulated upon activation (Lioudyno et al., 2008). There is no difference in cell surface expression of
ORAI1 between human memory and naive T-cells (Cox et al., 2013).
bMurine peripheral Tregs: mRNA data suggest the expression of Orai1 and Orai2, while much less of Orai3 (Vaeth et al., 2017).
Human peripheral Tregs: ORAI1 and ORAI2, but not ORAI3, were detected using immunocytofluorescence. The expression of Orai1 in Tregs is significantly inferior compared to naive and
activated CD4+ T-cells (Jin et al., 2013).
cMurine B cells express Orai1, Orai2 and Orai3 to a comparable extent (Gwack et al., 2008; Vaeth et al., 2017).
Human B cells: no detailed mRNA data. There is no difference in cell surface expression of ORAI1 between memory and naive B cells (Cox et al., 2013).
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liver fibrosis (Songa et al., 2014). Furthermore, TRPV4 is highly
expressed in hepatic stellate cells (Songa et al., 2014). Inhibition of
TRPV4 decreases cell proliferation of hepatic stellate cells,
decreases their TGF-β–dependent activation and the
expression of collagen α1 and α-smooth muscle actin genes in
in vitro cultures (Songa et al., 2014). Inhibition of TRPV4 also
leads to an increase in apoptosis and inhibition of autophagy in
the TGF-β–treated hepatic stellate cell line HCS-T6. These
findings can be taken as indication for a similar role of
TRPV4 channels in PSCs as well.

IMMUNITY AND PDAC

The description/staging of cancers has significantly evolved over the
last decades to include the tumor microenvironment (TME) and the
infiltration of the tumors by the immune system (e.g., Immunoscore®
for colorectal cancers (Galon et al., 2014)). This is particularly
important since T-cell infiltration, in general, bears a good
prognostic feature: high CD4+ and CD8+ densities are associated
with better overall and disease-free survival (Tang et al., 2014;
Knudsen et al., 2017; Lohneis et al., 2017; Nejati et al., 2017).

The development of PDAC can be seen as a result of failed
removal of malignant cells (Dunn et al., 2002). This failure might
originate from the quantitative and qualitative composition of
the immune cell repertoire in the TME, and/or altered function
of the immune cells and their ion channels. An in-depth analysis
of the immune cells in PDAC is beyond the scope of this review,
and thus, we will use a simplified classification scheme and focus
on the roles of the cells of innate and adaptive immunity in PDAC
progression and how their roles may be modulated by ion
channels. The expression of ion channels in immune cells in
PDAC is summarized in Table 2. Addition of the immune
component to a topical review on ion channels in PDAC is
unique to this article, and thus, basic functions of immune cells
have to be discussed briefly in the corresponding sections about a
cell type.

Based on the relative proportion of CD3+ and CD8+ cells over
all cells in the tumor (Galon and Bruni, 2019), PDAC is often
ranked among the “coldest” human tumors (Maleki Vareki,
2018). Although leukocytes (CD45+ cells) comprise almost
50% of all cells isolated from murine (Clark et al., 2007) and
human PDAC (Trovato et al., 2019), T lymphocytes are
significantly less abundant (15% of total cells in mice and ca.
20% in humans) compared to well-known “hot” tumors like
melanoma (Sakellariou-Thompson et al., 2017; Blando et al.,
2019). Low T-cell infiltration of PDAC can be due to a
desmoplastic mechanical impediment, hypoxia, and low
extracellular pH (Knudsen et al., 2017).

At the time of diagnosis, the TME is already highly
immunosuppressive, which can be related to the high number
of myeloid-derived suppressor cells in PDAC (Trovato et al.,
2019). Moreover, the low pH and the alterations of the ionic
composition of the TME may lead to the formation of tumor-
associated immune cells which become themalfunctioning side of
the immune response (Vesely et al., 2011; Gabrilovich et al., 2012;
Girault et al., 2020). The fact that ion channels are expressed in

both antitumor and protumor/suppressor immune cells allows us
to consider ion channels as putative mediators of the biased
immune response in PDAC (Feske et al., 2015; Fels et al., 2018).

Ionic Composition of the Tumor
Microenvironment
Distinct characteristics of PDAC, that is, poor vascularization and
a markedly fibrotic stroma, result in deficient oxygen supply and
metabolite accumulation (Olive et al., 2009; Provenzano et al.,
2012). The high metabolic rate, glycolysis (GAPDH activity;
production of lactate (Dovmark et al., 2017)), implementation
of the pentose phosphate pathway, and production of CO2 are the
source of protons which lead to extracellular acidification in
PDAC (Gillies et al., 2002; Hashim et al., 2011; High et al.,
2019). Such an acidification of poorly perfused tumor areas has a
profound impact on the function of ion channels in all cells of the
tumor tissue (reviewed in Pethő et al. (2020)). Acidification,
severe hypoxia, and mechanical stress also cause cell necrosis.
This is associated with an elevation of the [K+] in the interstitium
(Cruz-Monserrate et al., 2014; Eil et al., 2016; Leslie et al., 2019).
Moreover, the concentration of Na+, a major contributor of
osmotic pressure in the interstitium, is increased, which can
have multiple implications for the infiltration of immune cells
(He et al., 2020). Thus, the ionic composition of the tumor
microenvironment is characterized by altered concentration
gradients across the plasma membrane, that is, by altered
electrochemical driving forces and by constituents, for
example, protons, which have a strong impact on channel
activities. Importantly, the disrupted ionic composition is
sensed by ion channels in cancer, immune, and stromal cells
and inevitably affects their function. The consequences of the
altered tumor environment on cell function through the
modification of ion channels of immune cells will be discussed
in the following.

Cells of the Innate Immune Response
Neutrophils: A high number of neutrophils in the PDAC
stroma is usually associated with poor prognosis (Wang et al.,
2018; Oberg et al., 2019). Likewise, a high neutrophil-to-
lymphocyte ratio (NLR), also in peripheral blood, is
associated with a lower 5-year survival rate after tumor
resection (Nywening et al., 2018).

Expression of voltage-gated and Ca2+-activated channels,
KV1.3 and KCa3.1, was shown in murine and human
neutrophils (Krause and Welsh, 1990; Kindzelskii and Petty,
2005; Henríquez et al., 2016). Moreover, murine neutrophils
express electrophysiologically detected inwardly rectifying
Kir2.1 channels which are also assumed to contribute to their
resting membrane potential and Ca2+ influx (Masia et al., 2015).

Since K+ channels are involved in neutrophil migration and
chemotaxis like other cells present in the PDAC
microenvironment, a high extracellular K+ concentration may
also perturb neutrophil function. This assumption is important
not only in the context of their ability to reach the cancer niche
but may also be a cause of unfavorable retention of neutrophils in
PDAC milieu.
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While intracellular ATP is a regulator of neutrophils’ Kir6.x
channels (Silva-Santos et al., 2002), extracellular ATP, for
example, released from necrotic cells, induces neutrophil
recruitment through purinergic P2X7 receptor activation
(McDonald et al., 2010). Opening of the ATP-gated P2X
channels leads to Ca2+/Na+ influx (Karmakar et al., 2016).
Importantly, P2X7 is expressed also in cancer and PSCs, and
the P2X7 inhibitor, AZ10606120, reduces cancer cell proliferation
in vitro and in vivo (Haanes et al., 2012; Giannuzzo et al., 2015).

Ca2+ signaling plays a major role in neutrophil migration,
phagocytosis, and ROS production. One of the key mechanisms
in the Ca2+ increase is mediated by store-operated Ca2+ entry
(SOCE) and subsequent activation of Orai1 channels. Several
other Ca2+-permeable TRP channels are also involved in the
innate immune response (Najder et al., 2018). Since neutrophils
express C-X-C chemokine receptor–type 2 (CXCR2), they are
attracted by ligands like CXCL1/IL-8, CXCL2, and CXCL5,
released in pancreatitis and pancreatic cancer (Saurer et al.,
2000; Steele et al., 2016; Najder et al., 2018; Wu et al., 2019;
Zhang et al., 2020). Indeed, inhibition of CXCR2 signaling in
PDAC shows beneficial results (Ijichi et al., 2011; Steele et al.,
2016). Recruitment of neutrophils upon CXCR2 activation is
mediated by Na+ and Ca2+-permeable, classical/canonical
transient receptor potential 6 (TRPC6) channel (Lindemann
et al., 2013, 2020). TRPC6 is also expressed in PSCs, where it
mediates hypoxia-induced migration and production of
cytokines (Nielsen et al., 2017). In a mouse model, it could be
shown that inhibition of TRPC6 with specific antagonists
(SAR7334, BI-749327) diminishes the inflammatory response
in the lungs and ameliorates cardiac and renal fibrosis (Lin
et al., 2019; Chen et al., 2020). One can presume that such a
beneficial effect could also be elicited in PDAC, in part by
inhibiting neutrophil recruitment into the tumor.

In colorectal cancer, another chemokine receptor, formyl
peptide receptor (FPR1), is highly expressed in tumor-
infiltrating, myeloperoxidase-positive (MPO+) cells (Li et al.,
2017). Also, FPR1 is enriched in immune cells of the recently
suggested L4 PDAC subtype (Zhao et al., 2018). In murine
neutrophils, FPR1-mediated directed migration depends on
TRPC1 channels which may therefore contribute to neutrophil
infiltration in PDAC (Lindemann et al., 2015; Fels et al., 2018).

Once at the target, activated neutrophils produce ROS, release
metalloproteinases (e.g., MMP-9) and cytokines, and form
neutrophil extracellular traps (NETs) (Wu et al., 2019). The
remarkable ability of neutrophils to produce ROS depends on
the depolarizing activity of the NADPH oxidase (NOX2) and
concomitant action of voltage-gated proton channels (HV1)
(DeCoursey et al., 2016). Their activity in neutrophils is very
relevant for PDAC progression. Neutrophil-derived ROS may
cause cancer apoptosis due to TRPM2 channel activation
(Gershkovitz et al., 2018). Accordingly, pharmacological
stimulation of ROS production induces pancreatic tumor cell
apoptosis (Shi et al., 2008). However, channel expression in
cancer cells can also promote cancer cell proliferation (Lin
et al., 2018). Release of NETs, a defense mechanism of
extruding DNA covered with enzymes and histones, is often
ROS-dependent and is therefore indirectly mediated by HV1

activity. NET formation can occlude pancreatic ducts, cause
pancreatitis, and promote PDAC metastasis to the liver
(Leppkes et al., 2016; Takesue et al., 2020). Also, distant
PDAC metastasis is facilitated by activated neutrophils in the
circulation (Tao et al., 2016). Thus, aiming at the HV1 channel in
cancer therapy could have potential benefits, mostly due to
inhibition of ROS-related activity of neutrophils (Fernández
et al., 2016).

Macrophages: Tumor-associated macrophages (TAMs) are
generally divided into “classically activated” M1 and
“alternatively activated” immunosuppressive M2 macrophages.
The latter type is predominant in PDAC tissue (Habtezion et al.,
2016; Hu et al., 2016; Liu et al., 2016). M2 polarization is induced
by IL-4 and IL-13 (Biswas andMantovani, 2010). The presence of
these cells in PDAC is associated with poor prognosis. TAMs also
contribute to formation of desmoplasia through interplay with
PSCs and mutual stimulation of cytokine production. Moreover,
macrophage-derived metalloproteinases mediate dynamic
turnover of fibrotic tissue and allow for tumor expansion
(reviewed in Hu et al. (2015)). Chemotherapy can induce
macrophage polarization into the tumoricidal M1 type and
improve therapy outcome (Kurahara et al., 2011; Di Caro
et al., 2015). Macrophage recruitment to the tumor site is
mediated by CCL2/CCR2 and CSF-1/CSF-1R axes, with the
latter additionally promoting M2 polarization. Inhibition of
these signaling pathways shows potential benefits so that the
CCL2/CCR2 inhibitor (PF-04136309) is implemented in PDAC
clinical trials (NCT01413022) (Zhu et al., 2014; Habtezion et al.,
2016; Nywening et al., 2018).

Channels expressed in macrophages often overlap with those
expressed in neutrophils, especially in regard to K+ channels
(reviewed in: Feske et al. (2015)). There is also evidence that
K2P6.1 (TWIK2) mediates K+ efflux. In murine macrophages,
K2P6.1 leads to inflammasome formation and—in cooperation
with the depolarizing action of P2X7—induces release of IL-1β
(Di et al., 2018).

Ca2+ signaling plays a crucial role for macrophage
function. Thus, migration and phagocytosis of macrophages
depend on Ca2+-permeable channels (Desai and Leitinger,
2014). In addition, the polarization of macrophages is
mediated by several Ca2+-permeable ion channels including
few members of the TRP channel family. TRPM7 promotes
M2 polarization and shows high activity in this type of
macrophage (Schilling et al., 2014). In contrast, deletion of
TRPM2 favors a proinflammatory macrophage phenotype in
Helicobacter pylori infection (Beceiro et al., 2017). M1
macrophage polarization is promoted by the activity of
TRPC1 and KCa3.1 (Xu et al., 2017; Chauhan et al., 2018).
These channels could be taken under consideration in
approaching macrophage plasticity in PDAC, since M2
macrophages comprise the majority of infiltrated immune
cells. However, since TRPC1 and KCa3.1 channels are
expressed not only in neutrophils but also in cancer and
stromal cells as well as in lymphocytes, the impact of
activating these channels is difficult to predict (see below,
Pharmacological Targeting of Ion Channels in PDAC for a
more detailed discussion).

Frontiers in Pharmacology | www.frontiersin.org January 2021 | Volume 11 | Article 58659910

Hofschröer et al. Ion Channels in Pancreatic Ductal Adenocarcinoma Progression

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Dendritic cells: There are a few dendritic cells at the tumor
site and in the circulation of PDAC patients. The ability of
dendritic cells to present foreign antigens has been used for
designing dendritic cell–based immunotherapy (dendritic cell
vaccines) against pancreatic cancer (Deicher et al., 2018).
Some data indicate that dendritic cells predominantly support
immunological tolerance in the strongly immunosuppressive
PDAC environment (Barilla et al., 2019). Encountering an
antigen elicits [Ca2+]i to rise in dendritic cells, which is
mediated by CRAC channels. The voltage-gated K+ channels,
KV1.3 and KV1.5, modulate Ca2+ fluxes by hyperpolarizing the
membrane potential. They are involved in major
histocompatibility complex II expression, migration, cytokine
production, and phagocytosis (Matzner et al., 2008). P2X7 is
also expressed in murine dendritic cells, mediating antigen
presentation and migration (Mutini et al., 1999; Saéz et al.,
2017). However, despite their crucial role in coordinating the
immune response, the involvement of ion channels in functions
of dendritic cells present in PDAC tissue is not yet well-described.

Myeloid-derived suppressor cells: Myeloid-derived
suppressor cells (MDSCs) are not fully differentiated myeloid
cells which exhibit highly immunosuppressive features. They can
be further divided into polymorphonuclear (PMN-MDSC) and
monocytic (M-MDSC) in mice, and early-stage (eMDSC)
MDSCs in human. They share some phenotypic features with
differentiated myeloid cells but can be distinguished by their
inhibitory properties (Trovato et al., 2019). PSCs are presumed
culprits of promoting MDSCs in pancreatic cancer via IL-6
release (Mace et al., 2013). MDSCs themselves exhibit
increased arginase 1 activity, depleting the tumor
microenvironment of L-arginine, which, in turn, elicits T-cell
suppression. Not surprisingly, MDSC depletion is a looked for
method for PDAC treatment (Thyagarajan et al., 2019).

There is an immense lack of knowledge about the function of
ion channels in MDSCs. P2X7 and TRPV1 are the only channels
described in MDSCs so far. P2X7 activation in M-MDSCs
increases arginase-1, TGF-β, and production of ROS (Bianchi
et al., 2014). In mice, TRPV1 activation stimulates MDSCs and
protects from hepatitis (Hegde et al., 2011). The role of MDSC ion
channels in the PDAC environment still needs to be elucidated.

Natural killer cells: Natural killer cells (NK cells) are innate
lymphoid cells, and their function is similar to that of cytotoxic
CD8+ cells. Despite the fact that their percentage ranges around
1.5–2% of mononuclear cells (Marsh et al., 2014; Bazhin et al.,
2016) (which becomes 5% of leukocytes after a partial resection
(Gürlevik et al., 2016)), their role is important. The intravenous
injection of an NK cell line (LNK) into the tumor improves the
survival of mice and delays PDAC growth (Hu et al., 2019b).
Several clinical trials built on NK cell–based immunotherapy are
on at the moment (Sunami and Kleeff, 2019).

The role of NK cells against cancer is now well documented, and
their ion channels appear to be of pivotal importance (Redmond and
Buchanan, 2017). Like essentially all other lymphoid cells, NK cells
have CRAC currents andK+ currentsmediated byKV1.3 andKCa3.1,
which are crucial for their function (Redmond and Buchanan, 2017).
Koshy et al. discovered that aminority of humanNK cells, defined as
adherent NK cells, is able to nearly double the number of their KV1.3

and KCa3.1 channels after their activation by cocultured cancer cells
(KV1.3: 50 to 125/cell; KCa3.1: 20 to 40/cell). Contrariwise, the
majority of NK cells, named “nonadherent,” up-regulate only
KV1.3, while KCa3.1 channels remain unaltered (KV1.3: 20 to
350/cell; KCa3.1: 20 to 15/cell) (Koshy et al., 2013).

Cells of the Adaptive Immune Response
The PDAC tissue is heavily infiltrated by different subsets of T-
cells and B cells. Depending on the nature of the cells and the
cytokines being secreted, these cells can be both protumoral and
antitumoral. Unfortunately, very little information is available
about the ion channel expression of the different T-cell subsets in
PDAC. To set the frame for future research on ion channels in
PDAC-associated T- and B-cell subsets, we will first summarize
the general scheme about the dependence of T-cell activation on
ion channels and then focus on the T- and B-cell subsets relevant
in PDAC (Figure 2A) along with mostly non-PDAC–specific
information available about the ion channel expression of those
T- and B-cell subsets. Figure 2B provides an overview with
respect to the expression (changes) in two of the most
important K+ channels found in the various subtypes.

Adaptive Immunity: Antitumor Cells
Principal ion channels in T-cells. The function of ion channels
in T lymphocytes has been thoroughly investigated in the last
three decades (Cahalan and Chandy, 2009). T lymphocyte
activation strictly depends on extracellular Ca2+ entry via Ca2+

release–activated channels, CRAC, composed of Orai (three
homologues: Orai1, Orai2, and Orai3) and Stim (two
homologues: Stim1 and Stim2) proteins (Feske et al., 2012). In
human, T lymphocyte Orai1 is essential for correct T-cell
functioning (Vaeth et al., 2017). Ca2+ entry is facilitated by the
opening of two K+ channels, the voltage-gated gated KV1.3 and
the Ca2+-activated KCa3.1, which is activated by the increase in
the cytosolic free Ca2+ concentration above 200 nM (Panyi et al.,
2014). Like in PDAC cancer cells (see K+ Channels in Pancreatic
Cancer Cells), these K+ channels maintain a permissive negative
membrane potential for efficient Ca2+ signaling, and their
inhibition interferes with T-cell activation (Panyi et al., 2006).
This general mechanism is tailored to the T-cell subtypes either
by changing the relative expression level of KV1.3 vs. KCa3.1, or by
changing the subunit composition of the CRAC channel.

T-cell subsets in PDAC and their corresponding ion channel
repertoire. The major antitumor effector cells in PDAC belong to
CD4+ helper and CD8+ cytotoxic cells, usually present in the tumor
mass in similar proportions (Carstens et al., 2017; Stromnes et al.,
2017). CD4+ helper T-cells are actually a broad composition of
several subtypes (mainly Th1, Th2, and Th17). The 20-year-old
theory of the so-called “Th1/Th2 balance” stated that the
cancerous environment causes a decrease in the Th1/Th2 ratio,
toward a Th2-dominated and protumoral condition (Shurin et al.,
1999). Also in PDAC, the helper T-cell ratio is pivotal (Wörmann
et al., 2014). Thus, Th2-related cytokines like IL-4 (Piro et al., 2017)
or IL-6 (Mroczko et al., 2010) have been deemed as “prognostic” by
many researchers (De Monte et al., 2011; Yako et al., 2016). Th17
cells have an uncertain position in the tumor milieu, although the
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majority of cases tends toward a protumoral effect (Murugaiyan and
Saha, 2009; Ivanova and Orekhov, 2015). IL-17 and IL-22, produced
by Th17 cells, are correlated with a bad prognosis in PDAC
(McAllister et al., 2014; Wen et al., 2014). Contrariwise, using the
murine cancer cell line PANC-02 and inducing Th17 function
produced an antitumor effect (Gnerlich et al., 2010).

When naive T-cells encounter their specific antigens, they
differentiate into central memory T-cells (TCM) and effector
memory T-cells (TEM) of either CD4+ or CD8+ phenotype.
The majority of T-cells in an orthotopic mouse PANC02
PDAC model are effector/effector memory T-cells
(Shevchenko et al., 2013; Bazhin et al., 2016). In a similar
fashion, in human PDAC, most CD8+ tumor-infiltrating
lymphocytes are effector memory cells (Poschke et al., 2016;
Stromnes et al., 2017).

As noted above, relatively little is known about the ion channel
expression pattern in various T-cell subsets infiltrating the PDAC
tissue. Compared to naive T-cells, rich in both Orai1 and Orai2,
effector CD4+ and CD8+ T-cells down-regulate only Orai2,
generating more Orai1 homohexamers, which are
characterized by a superior Ca2+ conductance. In this manner,
effector T-cells allow larger Ca2+ influxes and activate quicker
after the antigen recognition than naive cells (Vaeth et al., 2017).
Naive human CD4+ and CD8+ T lymphocytes are characterized
by 200–300 KV1.3 and less than 10 functional KCa3.1 channels,
whereas their activated counterparts mildly up-regulate KV1.3
(300–350 channels/cell) and severely increase KCa3.1 expression
(500–550 channels/cell) (Ghanshani et al., 2000; Wulff et al.,
2003; Cahalan and Chandy, 2009).

Murine CD4+ Th1 and Th2 have similar numbers of KV1.3
channels in their membranes, while murine Th2 cells have
substantially less functional KCa3.1 channels than Th1
lymphocytes. This difference in the KCa3.1 expression/function
may explain the larger amplitudes of the Ca2+ signals in Th1 cells
(Fanger et al., 2000; Di et al., 2010). A flow cytometric analysis of
KV1.3 expression in human peripheral blood lymphocytes showed
that the Th1 subset has less KV1.3 channels than Th2 (Toldi et al.,
2011; Orbán et al., 2014). Consistent with this, they also reported that
KV1.3 inhibitors have a smaller impact on the Ca2+ transients in Th1
lymphocytes than KCa3.1 inhibitors (Toldi et al., 2011). Moreover,
Ca2+ influx through CRAC is more prevalent in Th1 than Th2 cells
(Toldi et al., 2012). Both mouse and human Th17 lymphocytes have
the highest KV1.3 expression, but no or little KCa3.1 expression (Di
et al., 2010; Orbán et al., 2014). It should be pointed out that the role
of KV1.3 and KCa3.1 in regulating Ca2+ signaling in human T-cell
subsets, addressed in the articles above, has not yet been confirmed
using electrophysiology.

TCM and TEM memory cells not only differ in characteristic
membrane markers and in their homing and trafficking ability
but also in their ion channel repertoire. Human resting TCM and
TEM cells, whether they are CD4+ or CD8+, are similar to naive
cells regarding their KV1.3 and KCa3.1 expression. When
activated, they dichotomically diverge: TCM cells show the
usual KCa3.1

high phenotype, whereas TEM cells exhibit a
dramatically increased KV1.3 expression in the plasma
membrane (Ghanshani et al., 2000; Wulff et al., 2003; Cahalan
and Chandy, 2009). (For more details with respect to the channel
expression of the various subtypes, see Figure 2B.)

FIGURE 2 | Ion channels in pancreatic ductal adenocarcinoma—infiltrating lymphocytes. (A) Lymphocytes found in the PDACmicroenvironment can be either pro-
or antitumorigenic. The ratio of T-helper lymphocytes (Th1/Th2; dashed line) has a prognostic value in assessing therapy outcome. The presence of other lymphocytes
can be either beneficial (NK and B cells) or detrimental (Treg and Th17) (yet, not univocally). These PDAC-infiltrating lymphocytes often show distinct channel activities,
which could be considered in targeted PDAC therapies. (B) Both helper (Th) and cytotoxic (Tc) T lymphocytes can be further subdivided into naive, central memory
(TC,M) or effector memory (TEM) T lymphocytes, the latter being the most abundant subtype in PDAC (indicated by the dashed line). Activation of T lymphocytes leads to
characteristic changes in the numbers (#) of KCa3.1 and KV1.3 channels. Activation of naive and TCM is associated with an increase in KCa3.1 expression, whereas
activation of TEM causes a distinct increase in the number of KV1.3 channels.
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B lymphocytes in PDAC and their corresponding ion
channel repertoire. The role of B cells in the pathology of
PDAC is not well defined. In human PDAC, they are
associated with a good prognosis (Castino et al., 2016;
Brunner et al., 2020). However, this is not adequately
mirrored by the existing mouse models (Spear et al., 2019). In
2016, three different research groups showed that B cells have a
protumorigenic role in genetically modified mice (KC mice
expressing the oncogenic Kras in the pancreas only) and in
healthy mice orthotopically injected with KC cells (reviewed in
Roghanian et al. (2016)). KMC, a mouse model characterized by
the knock-in of one or two copies of Myc (Farrell et al., 2017),
develops one of the most aggressive and histologically human-like
PDAC. It is not as strongly infiltrated by NK and B cells as the
slowly developing KC model. The removal of the Myc gene
promotes NK and B cells to enter the tumor mass,
lengthening the life span of mice (Muthalagu et al., 2020).
Some studies merely report B-cell infiltration in PDAC based
on their CD20 expression (Brunner et al., 2020), and further
classification of the cells based on their activation status
(i.e., CD27 expression) is lacking. Other studies, for example,
Castino et al., found that interspersed B cells from PDAC show
little or no CD27 and other fundamental markers. However,
when they organize themselves in tertiary lymphoid tissue
structures within the tumor stroma, CD27 expression is up-
regulated (Castino et al., 2016).

There is a strong relationship between the ion channel
expression and the activation status of the B cells (Wulff et al.,
2004). Human naive (IgD+ CD27−) and early memory (IgD+

CD27+) B cells, just like naive and central memory T-cells, are
abundant in KV1.3 and virtually lack KCa3.1 (naive: KV1.3:
90–100, KCa3.1: 5 channels/cell; early memory: KV1.3: 250,
KCa3.1: 5–10 channels/cell). These cells, when activated,
overexpress only KCa3.1 channels (naive: KV1.3: 80–100,
KCa3.1: 550–650 channels/cell; early memory: KV1.3: 150–200;
KCa3.1: 650–750 channels/cell) (Wulff et al., 2004; Cahalan and
Chandy, 2009). Late memory class-switched B cells (IgD−CD27+)
have plenty of KV1.3 and few KCa3.1 (KV1.3: 2,200–2,600; KCa3.1:
50–70 channels/cell). They tend to further enhance their KV1.3
expression when activated (KV1.3: 2,900–3,300; KCa3.1: 60–80
channels/cell).

Adaptive Immunity: Protumor Cells
Regulatory T-cells in PDAC and their corresponding ion
channel repertoire. Human Treg cells are important
immunosuppressive CD4+ lymphocytes heavily implicated in
autoimmunity. They are usually identified by the signature
CD4+CD25+Foxp3+ (Whiteside, 2015). In contrast to the
healthy pancreas (Weisberg et al., 2019), PDAC is heavily
infiltrated by Tregs. They can reach 20–40% of the whole
CD4+ pool (Shevchenko et al., 2013; Tang et al., 2014; Bazhin
et al., 2016). Recently, it has been discovered that PDAC tissues
overexpress a cancer-related Foxp3 protein (c-Foxp3) which,
through the secretion of CCL5, would recruit a high number
of Treg cells in the tumor environment (Wang et al., 2017).

Similarly to their helper CD4+ counterpart, human Tregs also
have a high number of voltage-gated KV1.3 channels (Estes et al.,

2008; Shao et al., 2018) and a low number of KCa3.1 channels in
their membrane (Varga et al., 2009). Intratumoral Tregs have a
peculiar T-cell receptor repertoire whose stimulation may have an
important role in their immunosuppressive function (Ahmadzadeh
et al., 2019). When human Tregs get activated by T-cell receptor
stimulation, they do not up-regulate KV1.3 as normal effector T-
cells do (Reneer et al., 2011) and activated human Tregs incubated
with KV1.3 and KCa3.1 blockers do not show any difference in the
Ca2+ influx, suggesting that the contribution of these channels to
the activation could be minimal (Orbán et al., 2014). Moreover,
Tregs from KCa3.1 knockout mice are able to suppress T-cell
proliferation in a comparable manner as wild-type Tregs,
pointing to a minor role of these channels (Di et al., 2010).
Similarly, knocking out KV1.3 in mice does not hinder the
physiological generation of Tregs (Gocke et al., 2012). Hence, the
role of these K+ channels in Tregs is currently still unclear. CRAC
channels are involved in Treg development and contribute to their
suppressive function (Vaeth et al., 2019).

THERAPEUTICAL APPROACHES AND ION
CHANNELS IN PDAC

Unfortunately, PDAC therapy has remained largely ineffective.
Radical surgical resection of the tumor as well as
chemotherapeutic agents like gemcitabine combined with nab-
paclitaxel and FOLFIRINOX constitutes the standard therapy for
PDAC patients (Hessmann et al., 2020). However, 80–90% of the
patients present at an advanced unresectable stage at the time of
diagnosis. Even if surgical intervention is possible, recurrence of
the cancer lesions will be common (Vincent et al., 2011; Peixoto
et al., 2015; Rawla et al., 2019). Therapy resistance is in part due to
the fibrotic microenvironment in PDAC which hinders drugs
from reaching their target and due to the immunosuppressive
properties of the PDAC tumor microenvironment. Nonetheless,
so far, therapeutic targeting of the PDAC tumor
microenvironment has not been successful (reviewed in
Hessmann et al. (2020)).

Electrolytes and Organic Metabolites in
PDAC
The great majority of the studies using ion channel blockers or
activators are aimed to target cancer cells, rather than immune
or stroma cells. The therapeutic potential of ion channels of
cancer-associated immune and stroma cells has not been
analyzed in great detail so far. In a groundbreaking study
by Eil et al., it was shown that B16 (mouse) or Mel624 (human)
melanoma cells subcutaneously injected into mice create a
TME much richer in K+ than serum (40 mM vs. 5 mM),
probably due to marked necrosis within the tumor (Eil
et al., 2016). Since more than 60% of PDAC cases host
micro- and/or macronecrotic spots (Hiraoka et al., 2010), it
is plausible to hypothesize that PDAC is a tumor rich in
extracellular K+ as well. The T-cell [K+]i is around 130 mM,
but when cultured in a medium with high [K+]o—specular of
what happens in vivo- the [K+]i in these cells can rise above
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150 mM (Eil et al., 2016; Ong et al., 2019). Although the [K+]
changes would result in the depolarization of the cell
membrane, the authors did not find a diminished Ca2+

influx into the T-cells during their activation in high [K+]o
(Eil et al., 2016). This is opposite to the generally accepted role
of the membrane potential in controlling Ca2+ signaling.

Membrane depolarization could also lead to enhanced IL-2
signaling in Tregs and, consequently, to suppressed antitumor
immune surveillance by such an unbalanced ionic environment
(Nagy et al., 2018). The high [K+]-adapted tumor-infiltrating
lymphocytes are less functional than the normal ones.
Conversely, decreasing the [K+]i in a forced manner using the
Na+/K+ ATPase blocker ouabain renders the CD8+ cells more
functional again. Moreover, substituting normal (poorly
functioning) immune cells with CD8+ cells overexpressing the
K+ efflux channels KV1.3 or KCa3.1 boosts their antitumor
activity. Tumor growth is slowed down, and this improves the
survival (Eil et al., 2016). These findings nicely illustrate how ion
channel function and thereby cell function depend on the
“correct” ionic composition of the pericellular environment.

The disrupted ion balance in the tumor microenvironment
also affects the operation of protumor immune cells.
Increasing [Na+]o and [Cl−]o in melanoma as well as lung
and breast cancer by the administration of a high salt diet
(HSD) inhibits the capacity of MDSCs to suppress antitumor
cytotoxic cells. Accordingly, this treatment has made the
tumors to shrink in size (Willebrand et al., 2019; He et al.,
2020). High [Na+]o and [Cl−]o partially inhibit the function of
thymus-derived mouse Tregs as well (Luo et al., 2019), which
could also contribute to the less immunosuppressive
environment. Whether these electrolytes influence
antitumor CD4+ and CD8+ T-cells is unclear. Melanoma
and breast cancer growth in BABL/C-nu/nu mice, lacking
sufficient T-cell–mediated immune reactions, are insensitive
to a high salt diet, indicating that T-cell–mediated antitumor
response is key to the high salt diet–induced antitumor activity
(He et al., 2020). On the other hand, the high salt diet prevents
tumors from growing also in RAG2−/−mice, despite the lack of
T and B cells in these animals. This suggests that the high salt
diet may act by yet another mechanism independent of
immune cell modulation (Willebrand et al., 2019). All these
studies clearly show that the electrolyte imbalance in the tumor
microenvironment significantly contributes to tumor
progression and may shape the immune response.

High salt diet increases the osmolarity in the cancer tissue (He
et al., 2020), which may influence the volume regulation of
immune and cancer cells and link the high–salt diet effects
described above to ion channels. Cell volume changes are
known to regulate cancer cell migration, invasion, and
apoptosis in an ion channel (and transporter)–dependent
manner (see for reviews (Bortner and Cidlowski, 2014; Schwab
and Stock, 2014)). In addition, cell volume changes in immune
cells regulate apoptosis (Bortner and Cidlowski, 2011) and B-cell
activation (Cvetkovic et al., 2019). Although the pivotal role of ion
channels in volume regulation in immune (Feske et al., 2015) and
cancer cells (Morishita et al., 2019) is well established, the relevant
ion channels that sense the altered ion concentrations and

osmolarity in the PDAC microenvironment are yet to be
identified.

In addition to [K+], the pH in the tumor microenvironment
also changes characteristically during the progression of the
disease. The nondiseased pancreas stroma is deemed to endure
postprandial tides of acidic pH in order to counterbalance the
apical excretion of HCO3

− ions. During the development of
PDAC, the tumor microenvironment becomes very acidic
(Pedersen et al., 2017). The extra- and intracellular pH
regulate voltage-gated K+ channels of the KV1 Shaker family
(Starkus et al., 2003). One of the major K+ channels in
lymphocytes, KV1.3, in particular, is uniquely modulated by
acidification. A decrease in both pHi and pHo reduces the
peak KV1.3 current, and acidification of the extracellular
medium slows inactivation kinetics of the current (Deutsch
and Lee, 1989). This dual regulation of KV1.3 by pHo allows
very sensitive modulation of the K+ conductance of the
membrane. Acidification-induced K+ current inhibition is
counterbalanced, depending on pHo, by the concomitant
slowing of the inactivation kinetics. Interestingly, the slowing
of the inactivation kinetics at low pHo is reverted to acceleration
of the kinetics when acidic extracellular pH is combined with
elevated [K+]e (Somodi et al., 2008). The unique response of
KV1.3 to extracellular acidification is mediated by reversible
protonation of H399 in the external vestibule of the channel
guarding the selectivity filter (Somodi et al., 2004). The
protonation of H399 also bears significance on the targeting of
the KV1.3 channel by peptide and nonpeptide inhibitors as well.
For example, tetraethylammonium (Somodi et al., 2004) and
peptide blockers (Rodrigues et al., 2003) lose their affinity for
KV1.3, when H399 is protonated. This molecular information
about KV1.3 gating at various pH and K+ concentrations may
contribute to the understanding of how the tumor
microenvironment interacts with immune cells at the level of
ion channels and may allow proper therapeutic ion channel
targeting. We refer to our recent review for a more detailed
discussion on how cancer progression may be affected by
modulation of cation channels in tumor and tumor stroma
cells (Pethő et al., 2020).

The disbalance of the tumor microenvironment is not
restricted to inorganic electrolytes. It is well known that
tumors are rich in ATP and adenosine, which influence cells
and their function through purinergic receptors (Feng et al.,
2020). The ATP concentration in the interstitial tissue of
PDAC is almost 100 times higher than normal pancreatic
stroma (∼10 μM vs. 100 nM (Hu et al., 2019a)). PDAC cells
usually overexpress both CD39 (Künzli et al., 2007) and CD73
(Harvey et al., 2020), which transform ATP to AMP and AMP to
adenosine. Thus, it is plausible that PDAC is rich in adenosine as
well, which would activate the receptor A2AR and inhibit CD8+

cells via PKA (Chimote et al., 2013). As more thoroughly
described later, adenosine also decreases the KCa3.1
conductance of T-cells without affecting the number of
channels in the membrane (Chimote et al., 2018). Adenosine
exerts in vivo and in vitro an anti-PDAC effect in
immunodeficient nu/nu mice (Yang et al., 2019). This means
that the outcome of the adenosine action will be the combination
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of inhibiting antitumor immunity and the growth of PDAC.
Three clinical trials are currently assessing whether antiadenosine
therapy coupled with immuno- and chemotherapies is able to halt
PDAC progression (Singh and O’Reilly, 2020).

Pharmacological Targeting of Ion Channels
in PDAC
Ion channel targeting is a well-established therapeutic concept in
other medical disciplines that has been successfully applied in the
clinical routine for decades. Because of their expression in the
plasma membrane, ion channels are easily druggable.
Intriguingly, many of the ion channels that are known to drive
tumor progression are targeted by drugs currently used for
noncancer indications, either as the primary effect or as a side
effect. These drugs could in principle be repurposed for cancer
treatment as suggested for nontorsadogenic KV11.1 blockers
(Kale et al., 2015; Pointer et al., 2017). The fact that cancer,
stroma, and immune cells rely nearly on the same set of ion
channels makes the selection of the right drug a complex quest.
Ideally, channel targeting should elicit synergistic effects such as
inhibition of tumor and stoma cell proliferation or migration as
well as activation of antitumor immune cells or inhibition of
tumor-promoting immune cells. This is further complicated by
the dynamics/variability of channel expression: in lymphocytes,
for example, such expression strongly relies on the activation state
of the respective subtype. Moreover, specificity of the channel
modulators constitutes another challenge which has not been
solved satisfactorily for many channels. However, an increasing
number of ion channel protein structures is becoming amenable
for in silico drug design (e.g., Brömmel et al. (2020b)).
Alternatively, peptide-based blockers or antibody targeting
could be more specific alternatives (Duranti and Arcangeli,
2019; Hartung et al., 2020; Tajti et al., 2020). Here, we list
potential target ion channels and the existing knowledge about
the consequence of their activation/inhibition in immune,
stroma, and tumor cells as well.

KCa3.1 is a well-studied channel in this context. The specific
modulators of KCa3.1 are inhibitors, such as TRAM-34 (Wulff
et al., 2000), senicapoc, NS6180, and verapamil (Wulff et al.,
2007), and activators such as riluzole (Liu et al., 2013) and 1-EBIO
(Devor et al., 1996). Molecular modeling suggests that senicapoc
binds to KCa3.1 channels in the open conformation (Brömmel
et al., 2020a). The inhibition or activation of an ion channel may
result in diminished or augmented cellular functions. For
example, two specific inhibitors of KCa3.1 (TRAM-34 and
NS6180) boosted in vivo adherent human NK-cell
proliferation, degranulation, and capacity of killing
erythroleukemic cells in mice (Koshy et al., 2013). Conversely,
activation of KCa3.1 channels with 1-EBIO inhibits migration of
transformed renal epithelial cells almost as effectively as channel
inhibition (Schwab et al., 2006). As discussed above, T
lymphocytes in PDAC are supposedly fairly devoid of KCa3.1;
hence, the use of such a blocker should not hinder physiological
function of these cells, regardless of [K+] in the tumor
microenvironment. On the other hand, in mice, the adoptive
cell transfer of TCM cells, a minority in PDAC but rich in KCa3.1,

more efficiently combats melanoma than the transfer of the TEM

subset that poorly expresses KCa3.1 (Klebanoff et al., 2005, 2016).
Unfortunately, the consequence of the modulation of KCa3.1
activity of TEM and TCM cells has not been elaborated yet in
tumor models.

KCa3.1 is unique among the K+ channels of the immune
system since the consequences of both channel inhibition and
activation can be studied. Activation of KCa3.1 by 1-EBIO is able
to induce movement in akinetic CD8+ cells isolated from the
peripheral blood of head and neck squamous cell carcinoma
patients and ameliorate their IFN-γ production (Chimote et al.,
2018). Thus, pharmacological activation of KCa3.1 may enhance
antitumor activity of CD8+ T-cells by overcoming the inhibition
of the KCa3.1 activity caused by large amounts of adenosine in
cancer stroma and/or localized down-regulation of membrane-
proximal calmodulin, the Ca2+ sensor of KCa3.1. The diminished
association of calmodulin with the channel suppresses the KCa3.1
activity in circulating T-cells and limits their ability to infiltrate
adenosine-rich tumor-like microenvironments (Chimote et al.,
2020). How NK cells would behave with a KCa3.1 activator has
not been studied. It is known however that in patients suffering
from amyotrophic lateral sclerosis, riluzole, which is the only
disease-modifying therapy for ALS, does not compromise NK
cells from entering the spinal cord and themotor cortex (Garofalo
et al., 2020). Based on this, we can hypothesize that KCa3.1
activation would not interfere with the antitumor action of
NK cells.

In vitro studies also demonstrated that the KCa3.1 activator
SKA-346 increases the IFN-γ secretion of high [K+]-inhibited
human T-cells by 50% (Ong et al., 2019). Neither this nor new
KCa3.1 activators, like SKA-31 and SKA-121 (Ohya and Kito,
2018), have been tested in PDAC; hence, their usefulness is, in
light of our current knowledge, unknown.

It is important to point out that KCa3.1 activators are also
targeting cancer cells and stromal cells. This has been shown for
multiple cancer entities (see Mohr et al., (2019) for review)
including PDAC (Jäger et al., 2004; Bonito et al., 2016; Storck
et al., 2017). Riluzole and SKA-31 were successfully used to
suppress the expansion of colorectal cancer cell lines, in
combination with the KV11.1 channel blocker E4031 (Pillozzi
et al., 2018) (see below for a detailed discussion of the challenges
associated with targeting KV11 channels in PDAC therapy).
Another study by Sun et al. showed that riluzole is capable of
inhibiting the proliferation and partly killing several human
PDAC cell lines (Sun et al., 2019). These effects, in
combination with the aforementioned effect of KCa3.1
activators in rebalancing T-cell [K+]i, could synergistically act
in the treatment of malignancies by targeting the KCa3.1 channel.

Although riluzole has been defined and used as a KCa3.1
activator (Pillozzi et al., 2018), this has to be viewed with
caution since its specificity is very limited and it inhibits a
series of other ion channels, such as KV11.1 (Pillozzi et al.,
2018) and, most notably, several voltage-gated sodium
channels (NaV1.x) (Song et al., 1997; Djamgoz and Onkal,
2012). Several human carcinomas express those NaVs, which
promote invasiveness and metastasis under hypoxic conditions
(Djamgoz et al., 2019). Inhibition of the hypoxia-sensitive
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persistent component of the NaV current (INaP) by riluzole
suppresses cancer cell invasiveness in vitro (Djamgoz and
Onkal, 2012). There is evidence that aggressive PDAC cell
lines express NaV1.5 and NaV1.6, but these channels do not
seem to play a major functional role in PDAC cells. NaV channel
activity becomes measurable only upon EGFR inhibition (Bonito,
2017). Hence, we can suppose that riluzole will not influence
PDAC growth by its direct action on NaV. The aforementioned
effects of the “broad-spectrum” ion channel inhibitor riluzole on
PDAC cell lines (Sun et al., 2019) are therefore more likely to be
attributed to its action on the KCa3.1 or KV11.1 channels.
Nonetheless, the use of a broad-spectrum ion channel
modulator can be justified when it yields the desired
phenotypic effects (e.g., inhibition of migration and
proliferation). Phenotypical drug screening is at least as
successful as molecular screening which aims at a single
molecularly defined target (Zheng et al., 2013).

Riluzole has pleiotropic effects, including dampening of
excitotoxicity through interruption of glutamatergic
transmission in the central nervous system (Benavides et al.,
1985). This effect may be mediated by the inhibition of the
activation of NMDA glutamate receptors (Debono et al.,
1993). In addition to the inhibition of glutamatergic
transmission, the beneficial effects of riluzole in the treatment
of ALS may include inhibition of presynaptic voltage-gated Ca2+

channels and the inhibition of NaV channels and block of the
persistent Na+ currents in motoneurons ((Lamanauskas and
Nistri, 2008), and see Cheah et al. (2010) for review). Thus,
the use of riluzole as a KCa3.1 activator may be limited by its
effects on the central nervous system.

The action of NaV inhibitors is further complicated as human
immature dendritic cells express NaV1.7 (Zsiros et al., 2009).
Silencing NaV1.7 shifts the membrane potential to more
hyperpolarized values in CD1a+ immature dendritic cells. This
results in decreased cell migration, which otherwise is a hallmark
of a functionally immature dendritic cells (Kis-Toth et al., 2011).
How this would impact in PDAC, a tumor known for its paucity
in dendritic cell infiltration (Hegde et al., 2020), has not been
explored yet.

The ATP-rich PDAC environment could also enhance
immunosuppression through P2X7, which is present in both
T lymphocytes (Feske et al., 2012) as well as in cancer (Giannuzzo
et al., 2015) and stellate cells in PDAC (Haanes et al., 2012). This
cation-selective ion channel is important for the infiltration of T
lymphocytes into the tumor, since P2X7−/− mice have a
suboptimal immune response (De Marchi et al., 2019).
Interestingly, inhibiting P2X7 with a selective antagonist like
A740003 causes an increase in the percentage of infiltrating
CD4+ cells and a significant drop in tumor weight and Treg

abundance (De Marchi et al., 2019). Whether these results,
obtained with a mouse melanoma model, can be translated to
immune modulation in a “cold” tumor like PDAC is unclear: the
few reports about in vivo administration of P2X7 antagonists
(AZ10606120 and A438079) did not analyze the involvement of
the immune system (Mohammed et al., 2017) or used
immunodeficient nude mice (Giannuzzo et al., 2016).

Challenges of Using KV11 Channels as
Therapeutic Target in PDAC
The most critical issue for using KV11.1 channel blockers in PDAC
therapy have and still will be their cardiac side effects. Indeed, KV11.1
channels are highly expressed in the heart, representing the
molecular correlate of the rapid repolarizing current IKr
(Sanguinetti et al., 1995; Trudeau et al., 1995). Due to their
peculiar gating properties, these channels are very effective in
sustaining fast repolarizations in cardiac myocytes (Sanguinetti,
2010). For these reasons, pharmacological inhibition or
malfunction of the KV11.1 channel can lead to potentially life-
threatening arrhythmias, such as the long QT syndrome (LQT)
(Sanguinetti, 2010; Mitcheson and Arcangeli, 2014).

Many KV11.1 channel blockers like the methanesulfonanilide
E4031, which belong to class III of antiarrhythmic drugs (Ågren
et al., 2019), require an open channel to gain access to the channel
pore. They block the K+

flow and hence can delay heart
repolarization (Mitcheson and Arcangeli, 2014; Chen et al., 2016),
thus lengthening the QT interval. The capacity of different
compounds to block KV11.1 channels and induce QT
prolongation (the so-called “QT liability”) differs among
structurally diverse compounds (Sanguinetti, 2010; Authier et al.,
2017) so that some drugs effectively block KV11.1 channels but do
not cause arrhythmias. These drugs are addressed as
“nontorsadogenic KV11.1 blockers.” These drugs may represent
good candidates for anticancer therapy (Cernuda et al., 2019).

An example is represented by R-roscovitine, a cyclin-dependent
kinase (CDK) inhibitor that, although blocking KV11.1 currents in
an open channel manner, shows no use dependency. This suggests
rapid block and unblock kinetics (Cernuda et al., 2019). Thus,
R-roscovitine could be used to target KV11.1 for PDAC therapy.
Besides this compound, other studies have pointed out a potential for
many “nontorsadogenic” KV11.1 blockers (Pointer et al., 2017) and
drugs which bind the KV11.1 channel in a specific conformation
(Becchetti et al., 2019). For example, the macrolide antibiotic
clarithromycin, which is commonly used for bacterial infection,
such as H. pylori, binds to KV11.1 in the closed conformation and
shows a good antitumor activity in colorectal cancer (Petroni et al.,
2020). Because it is already in clinical use for bacterial infections, it
could also potentially serve as an antitumor drug in epithelial cancers
like colorectal cancer and PDAC, as already shown in lymphomas
(Ferreri et al., 2018).

Another approach is to target the KV11.1 subunit trafficking to
the membrane. Up to now, several molecules have been shown to
interfere with trafficking without having any effect on the channel
itself. These include arsenic trioxide, geldanamycin, pentamidine,
and probucol (Chen et al., 2016). Notably, arsenic trioxide has
been and is still used as an anticancer drug, especially in
leukemias (Hoonjan et al., 2018).

Yet another approach is to target KV11.1 channels with
antibodies. The clinical potential of monoclonal antibodies has
emerged in the last decade. However, due to the cardiovascular
side effects seen for many drugs, targeting the KV11.1 channel with
single-chain function blocking antibodies is also challenging and not
preferred. KV11.1 channel–specific antibodies, such as the single-
chain variable fragment (scFv), anti-Kv11.1 ScFv, are more relevant
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for cancer diagnosis, rather than for cancer treatment (Duranti et al.,
2018). The risk of cardiac side effects can be reduced by employing
bispecific antibodies. KV11.1 interacts with β1 integrins in PDAC,
which is a tumor-specific feature of KV11.1 channels (Arcangeli and
Becchetti, 2017). A convenient approachwould therefore be to target
this complex with a bifunctional single-chain diabody (scDb). This
would increase the antibody–cancer cell specificity and reduce

cardiovascular side effects. It may be taken as a proof of principle
for therapeutic ion channel targeting that a monoclonal antibody
against KV10.1 reduces tumor volume in a human pancreatic cancer
xenograft mice model (Gómez-Varela et al., 2007).

Finally, antibody–drug conjugates (ADC) are
biopharmaceutical drugs that are used for targeted therapy
(e.g., Pahl et al. (2018)). The combination of cancer specificity

FIGURE 3 | Ion channels in pancreatic ductal adenocarcinoma microenvironment and examples of channel modulators. Up to date, resection and chemotherapy
are the only therapeutic approaches against PDAC. However, the fibrotic and acidic immunosuppressive tumor milieu hinders drug delivery and disturbs immune
response. Ion channels expressed in tumor, stromal, and immune cells control cellular responses and therefore stand for putative drug targets. Here, we display those
channels whose function has been investigated in cells of the PDAC tumor tissue. The respective modulators are indicated by asterisks.
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and cytotoxicity makes them good candidates for next-generation
cancer therapy (Parslow et al., 2016). An anti-KV11.1/β1 scDb
could potentially be linked to cytotoxic drugs to create highly
specific ADCs for pancreatic cancer treatment.

OUTLOOK

It remains an unsolved challenge to provide PDAC patients with an
efficient therapy. New therapeutic strategies are urgently needed
since none of the current treatment options yields satisfactory
results. Presently, it is controversially debated whether the
desmoplastic PDAC stroma and microenvironment can be
targeted therapeutically. The conflicting results of these studies
indicate that the properties and function of stromal cells such as
pancreatic stellate cells and PDAC-infiltrating immune cells are far
from being fully understood. In our view, an important class of
membrane proteins has been neglected in this context: ion channels.
They have been shown to be important drivers of aggressive cancer
cell properties and related to all hallmarks of cancer. Being
membrane proteins, ion channels are in a position to modulate,
sense, and transduce properties of the tumor microenvironment.
However, their roles in pancreatic cancer cells and in cells of the
PDAC microenvironment are largely unexplored.

We collected the current knowledge of ion channels in PDAC
with a particular focus on immune and stromal cells and
discussed the feasibility of therapeutic ion channel targeting.
Figure 3 gives a graphical overview. Many tumors (mis-)use
ion channels as highlighted for PDAC in this review. Based on the
rapidly growing mechanistic knowledge about ion channels in
PDAC, we are convinced that ion channel targeting offers a
chance for therapeutic intervention.

We conclude that the choice of the right blocker or activatormust
be accurately rationalized, at least until we obtain enough data from
electrophysiological measurements. Such data are still lacking for
PDAC-infiltrating immune cells (Panyi et al., 2014). Similarly, there
is hardly any electrophysiological data on stromal cells like PSCs.
Studying ion channel activity directly in tumor-derived immune or
stromal cells is an important issue. Their channel expression could
show distinct differences from that of peripheral bloodmononuclear
cells or stromal cells isolated from a healthy pancreas. Moreover, it is
imperative to consider the microenvironmental conditions under
these circumstances. Up-regulation of channel expression may well
be counterbalanced by characteristic properties of the tumor
microenvironment such as the tumor acidity (Pethő et al., 2020).
Since no KV1.3 activators are available at the moment (Chandy and
Norton, 2016), KCa3.1 activators appear promising in boosting
tumor-infiltrating lymphocytes. Repurposing of riluzole is a good
candidate for therapeutic KCa3.1 activation; however, the lack of
selectivity for KCa3.1 might limit its application. At the same time,
KCa3.1 inhibitors could activate NK cells and stop cancer cells or
stromal cells from proliferating and/or migrating. Only in vivo
studies will reveal in the future which arm of the balance we
should put our weights on when developing channel-targeting
PDAC therapies. Thus, crossing KCa3.1

−/− mice with transgenic
breast cancer mouse models provided evidence that the impact
KCa3.1 targeting in cancer cells may be further modulated by KCa3.1

targeting in noncancerous cells (Steudel et al., 2017). In this context,
the right choice of the animal model is crucial, since mouse
lymphocytes possess a different set of ion channels than rat and
human ones (Beeton and Chandy, 2005). Such studies also need to
evaluate repurposed drugs that are already in clinical use or have
been tested in phase III clinical trials for other indications such as the
KCa3.1 blocker senicapoc (Ataga et al., 2011).

Another channel modulator that might serve as a target for
drug repurposing is clofazimine. It inhibits KV1.3, thereby
inducing apoptosis in PDAC cells and reducing primary
tumor weight in vivo (Zaccagnino et al., 2017). It is already
used for treatment of autoimmune disease and leprosy (Garrelts,
1991). However, KV1.3 block, inhibition of Na+/K+-ATPase of
activated T-cells (Anderson et al., 1986), and the release of ROS
and PGE2 from bystander neutrophils (Anderson et al., 1986)
inhibit T-cell proliferation and thus may compromise antitumor
immunity as well. Follow-up studies are needed to tackle already
existing ion channel modulators (inhibitors or activators) for a
fast translation into the clinic for PDAC patients. We anticipate
that combining innovative animal models with repurposed ion
channel targeting drugs—potentially in combination with
existing chemotherapeutic therapies—will open up exciting
new options. Clearly, such studies would enormously profit
from building larger (inter-)national research consortia that
can address the diverse channel-related aspects of PDAC
pathophysiology in a concerted manner.
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