6,182 research outputs found

    Superfluid Optomechanics: Coupling of a Superfluid to a Superconducting Condensate

    Get PDF
    We investigate the low loss acoustic motion of superfluid 4^4He parametrically coupled to a very low loss, superconducting Nb, TE011_{011} microwave resonator, forming a gram-scale, sideband resolved, optomechanical system. We demonstrate the detection of a series of acoustic modes with quality factors as high as 7â‹…1067\cdot 10^6. At higher temperatures, the lowest dissipation modes are limited by an intrinsic three phonon process. Acoustic quality factors approaching 101110^{11} may be possible in isotopically purified samples at temperatures below 10 mK. A system of this type may be utilized to study macroscopic quantized motion and as an ultra-sensitive sensor of extremely weak displacements and forces, such as continuous gravity wave sources

    Ultra-high Q Acoustic Resonance in Superfluid 4He

    Get PDF
    We report the measurement of the acoustic quality factor of a gram-scale, kilo-hertz frequency superfluid resonator, detected through the parametric coupling to a superconducting niobium microwave cavity. For temperature between 400mK and 50mK, we observe a T−4T^{-4} temperature dependence of the quality factor, consistent with a 3-phonon dissipation mechanism. We observe Q factors up to 1.4⋅1081.4\cdot10^8, consistent with the dissipation due to dilute 3^3He impurities, and expect that significant further improvements are possible. These experiments are relevant to exploring quantum behavior and decoherence of massive macroscopic objects, the laboratory detection of continuous wave gravitational waves from pulsars, and the probing of possible limits to physical length scales.Comment: 5 pages, 2 figure

    Results from new fungus-tolerant grapevine varieties for Organic Viticulture

    Get PDF
    Two red and three white new fungus-tolerant grape varieties were tested within a period of five years. REGENT, RONDO, JOHANNITER and Gf 48-12 show a better wine quality than PINOT NOIR or SILVANER and can be recommended for Organic Viticulture as well as for the conventional viticulture to reduce copper and fungicide applications

    Anisotropic conductivity of disordered 2DEGs due to spin-orbit interactions

    Full text link
    We show that the conductivity tensor of a disordered two-dimensional electron gas becomes anisotropic in the presence of both Rashba and Dresselhaus spin-orbit interactions (SOI). This anisotropy is a mesoscopic effect and vanishes with vanishing charge dephasing time. Using a diagrammatic approach including zero, one, and two-loop diagrams, we show that a consistent calculation needs to go beyond a Boltzmann equation approach. In the absence of charge dephasing and for zero frequency, a finite anisotropy \sigma_{xy} e^2/lhpf arises even for infinitesimal SOI.Comment: 6+ page

    Sum rules for spin-Hall conductivity cancelation

    Full text link
    It has been shown recently that the universal dc spin conductivity of two-dimensional electrons with a Rashba spin-orbit interaction is canceled by vertex corrections in a weak scattering regime. We prove that the zero bulk spin conductivity is an intrinsic property of the free-electron Hamiltonian and scattering is merely a tool to reveal this property in terms of the diagrammatic technique. When Zeeman energy is neglected, the zero dc conductivity persists in a magnetic field. Spin conductivity increases resonantly at the cyclotron frequency and then decays towards the universal value.Comment: 4 pages, 1 figur

    Bat Activity Patterns and Roost Selection in Managed Forests

    Get PDF
    The recent introduction and subsequent westward spread of white-nose syndrome (WNS) has decimated hibernating bat populations in eastern North America and created an urgent need for scientists to understand basic information about bat ecology, especially during the winter season. White-nose syndrome has killed between 5 and 7 million bats and continues to spread westward from the eastern U.S. and southern Canada, primarily affecting bats during hibernation. Acoustic monitoring has been suggested as a potential surveillance tool for detecting WNS; however, baseline information must first be collected to test this technique.  We initiated a pilot project in June 2014 by deploying 2 remote acoustic monitoring stations in western Montana’s managed forests collecting baseline acoustic information. We also conducted radio telemetry to determine characteristics of roosts used by bats during the fall season. Thus far we have recorded 11 of Montana’s 15 bat species, and observed extremely high activity levels during the summer. We radio-tagged 5 bats of 3 different species (California myotis, Western small-footed myotis, Silver-haired bat) and tracked them in late October and early November. Identifying the characteristics of roost sites used during the pre-hibernation period, and the annual activity patterns determined from acoustic monitoring, begin to form the foundation for understanding basic aspects of bat ecology during the season when Montana bats will be most susceptible to WNS

    Bat Activity Patterns and Roost Selection in Managed Forests

    Get PDF
    The recent introduction and subsequent westward spread of white-nose syndrome (WNS) has decimated hibernating bat populations in eastern North America and created an urgent need for scientists to understand basic information about bat ecology, especially during the winter season. White-nose syndrome has killed between 5 and 7 million bats and continues to spread westward from the eastern U.S. and southern Canada, primarily affecting bats during hibernation. Acoustic monitoring has been suggested as a potential surveillance tool for detecting WNS; however, baseline information must first be collected to test this technique.  Recent interests in habitat for resident bats has focused on managed forests, particularly in western Montana, where caves used as communal winter hibernacula are not abundant.  We initiated a pilot project in June 2014 deploying 2 remote acoustic monitoring stations on Plum Creek property in Flathead County and adding an additional 2 stations in forests owned by Stoltze Land and Lumber and Stimson Lumber Company in May 2015 to collect baseline acoustic information. We also conducted radio telemetry to determine characteristics of roosts used by bats during the fall season in 2014 and 2015. Thus far we have acoustically detected 11 of Montana’s 15 bat species, observed extremely high activity levels during the summer, and detected bat activity during every month of the year. We radio-tagged 14 bats of 4 different species; California myotis (Myotis californicus), Western small-footed myotis (Myotis ciliolabrum), Silver-haired bat (Lasionycteris noctivagans), Little brown bat (Myotis lucifugus) and tracked them in late October and early November. Identifying the characteristics of roost sites used during the pre-hibernation period, and the annual activity patterns determined from acoustic monitoring, begin to form the foundation for understanding basic aspects of bat ecology during the season when Montana bats will be most susceptible to WNS

    Stochastic heating of a molecular nanomagnet

    Full text link
    We study the excitation dynamics of a single molecular nanomagnet by static and pulsed magnetic fields. Based on a stability analysis of the classical magnetization dynamics we identify analytically the fields parameters for which the energy is stochastically pumped into the system in which case the magnetization undergoes diffusively and irreversibly a large angle deflection. An approximate analytical expression for the diffusion constant in terms of the fields parameters is given and assessed by full numerical calculations.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    Momentum-resolved evolution of the Kondo lattice into 'hidden-order' in URu2Si2

    Full text link
    We study, using high-resolution angle-resolved photoemission spectroscopy, the evolution of the electronic structure in URu2Si2 at the Gamma, Z and X high-symmetry points from the high-temperature Kondo-screened regime to the low-temperature `hidden-order' (HO) state. At all temperatures and symmetry points, we find structures resulting from the interaction between heavy and light bands, related to the Kondo lattice formation. At the X point, we directly measure a hybridization gap of 11 meV already open at temperatures above the ordered phase. Strikingly, we find that while the HO induces pronounced changes at Gamma and Z, the hybridization gap at X does not change, indicating that the hidden-order parameter is anisotropic. Furthermore, at the Gamma and Z points, we observe the opening of a gap in momentum in the HO state, and show that the associated electronic structure results from the hybridization of a light electron band with the Kondo-lattice bands characterizing the paramagnetic state.Comment: Updated published version. Mansucript + Supplemental Material (8 pages, 9 figures). Submitted 16 September 201
    • …
    corecore