259 research outputs found

    Modeling postglacial vegetation dynamics of temperate forests on the Olympic Peninsula (WA, USA) with special regard to snowpack

    Get PDF
    Past and future forest composition and distribution in temperate mountain ranges is strongly influenced by temperature and snowpack. We used LANDCLIM, a spatially explicit, dynamic vegetation model, to simulate forest dynamics for the last 16,000 years and compared the simulation results to pollen and macrofossil records at five sites on the Olympic Peninsula (Washington, USA). To address the hydrological effects of climate-driven variations in snowpack on simulated forest dynamics, we added a simple snow accumulation-and-melt module to the vegetation model and compared simulations with and without the module. LANDCLIM produced realistic present-day species composition with respect to elevation and precipitation gradients. Over the last 16,000 years, simulations driven by transient climate data from an atmosphere-ocean general circulation model (AOGCM) and by a chironomid-based temperature reconstruction captured Late-glacial to Late Holocene transitions in forest communities. Overall, the reconstruction-driven vegetation simulations matched observed vegetation changes better than the AOGCM-driven simulations. This study also indicates that forest composition is very sensitive to snowpack-mediated changes in soil moisture. Simulations without the snow module showed a strong effect of snowpack on key bioclimatic variables and species composition at higher elevations. A projected upward shift of the snow line and a decrease in snowpack might lead to drastic changes in mountain forests composition and even a shift to dry meadows due to insufficient moisture availability in shallow alpine soils

    Alpine Glacier Reveals Ecosystem Impacts of Europe’s Prosperity and Peril Over the Last Millennium

    Get PDF
    Information about past ecosystem dynamics and human activities is stored in the ice of Colle Gnifetti glacier in the Swiss Alps. Adverse climatic intervals incurred crop failures and famines and triggered reestablishment of forest vegetation but also societal resilience through innovation. Historical documents and lake sediments record these changes at local—regional scales but often struggle to comprehensively document continental-scale impacts on ecosystems. Here, we provide unique multiproxy evidence of broad-scale ecosystem, land use, and climate dynamics over the past millennium from a Colle Gnifetti microfossil and oxygen isotope record. Microfossil data indicate that before 1750 CE forests and fallow land rapidly replaced crop cultivation during historically documented societal crises caused by climate shifts and epidemics. Subsequently, with technology and the introduction of more resilient crops, European societies adapted to the Little Ice Age cold period, but resource overexploitation and industrialization led to new regional to global-scale environmental challenges

    Ice cave reveals environmental forcing of long-term Pyrenean tree line dynamics

    Get PDF
    1. Tree lines are supposed to react sensitively to the current global change. However, the lack of a long-term (millennial) perspective on tree line shifts in the Pyrenees prevents understanding the underlying ecosystem dynamics and processes. 2. We combine multiproxy palaeoecological analyses (fossil pollen, spores, conifer stomata, plant macrofossils, and ordination) from an outstanding ice cave deposit located in the alpine belt c. 200 m above current tree line (Armeña-A294 Ice Cave, 2, 238 m a.s.l.), to assess for the first time in the Pyrenees, tree line dynamics, and ecosystem resilience to climate changes 5, 700–2, 200 (cal.) years ago. 3. The tree line ecotone was located at the cave altitude from 5, 700 to 4, 650 cal year bp, when vegetation consisted of open Pinus uncinata Ramond ex DC and Betula spp. Woodlands and timberline were very close to the site. Subsequently, tree line slightly raised and timberline reached the ice cave altitude, exceeding its today''s uppermost limit by c. 300–400 m during more than four centuries (4, 650 and 4, 200 cal year bp) at the end of the Holocene Thermal Maximum. After 4, 200 cal year bp, alpine tundra communities dominated by Dryas octopetala L. expanded while tree line descended, most likely as a consequence of the Neoglacial cooling. Prehistoric livestock raising likely reinforced climate cooling impacts at 3, 450–3, 250 cal year bp. Finally, a tree line ecotone developed around the cave that was on its turn replaced by alpine communities during the past 2, 000 years. 4. Synthesis. The long-term Pyrenean tree line ecotone sensitivity suggests that rising temperatures will trigger future P. uncinata and Betula expansions to higher elevations, replacing arctic–alpine plant species. Climate change is causing the rapid melting of the cave ice; rescue investigations would be urgently needed to exploit its unique ecological information

    Itch and skin rash from chocolate during fluoxetine and sertraline treatment: Case report

    Get PDF
    BACKGROUND: The skin contains a system for producing serotonin as well as serotonin receptors. Serotonin can also cause pruritus when injected into the skin. SSRI-drugs increase serotonin concentrations and are known to have pruritus and other dermal side effects. CASE PRESENTATION: A 46-year-old man consulted his doctor due to symptoms of depression. He did not suffer from any allergy but drinking red wine caused vasomotor rhinitis. Antidepressive treatment with fluoxetine 20 mg daily was initiated which was successful. After three weeks of treatment an itching rash appeared. An adverse drug reaction (ADR) induced by fluoxetine was suspected and fluoxetine treatment was discontinued. The symptoms disappeared with clemastine and betametasone treatment. Since the depressive symptoms returned sertraline medication was initiated. After approximately two weeks of sertraline treatment he noted an intense itching sensation in his scalp after eating a piece of chocolate cake. The itch spread to the arms, abdomen and legs and the patient treated himself with clemastine and the itch disappeared. He now realised that he had eaten a chocolate cake before this episode and remembered that before the first episode he had had a chocolate mousse dessert. He had never had any reaction from eating chocolate before and therefore reported this observation to his doctor. CONCLUSIONS: This case report suggests that there may be individuals that are very sensitive to increases in serotonin concentrations. Dermal side reactions to SSRI-drugs in these patients may be due to high activity in the serotonergic system at the dermal and epidermo-dermal junctional area rather than a hypersensitivity to the drug molecule itself

    Automatic identification of relevant chemical compounds from patents

    Get PDF
    In commercial research and development projects, public disclosure of new chemical compounds often takes place in patents. Only a small proportion of these compounds are published in journals, usually a few years after the patent. Patent authorities make available the patents but do not provide systematic continuous chemical annotations. Content databases such as Elsevier’s Reaxys provide such services mostly based on manual excerptions, which are time-consuming and costly. Automatic text-mining approaches help overcome some of the limitations of the manual process. Different text-mining approaches exist to extract chemical entities from patents. The majority of them have been developed using sub-sections of patent documents and focus on mentions of compounds. Less attention has been given to relevancy of a compound in a patent. Relevancy of a compound to a patent is based on the patent’s context. A relevant compound plays a major role within a patent. Identification of relevant compounds reduces the size of the extracted data and improves the usefulness of patent resources (e.g. supports identifying the main compounds). Annotators of databases like Reaxys only annotate relevant compounds. In this study, we design an automated system that extracts chemical entities from patents and classifies their relevance. The goldstandard set contained 18 789 chemical entity annotations. Of these, 10% were relevant compounds, 88% were irrelevant and 2% were equivocal. Our compound recognition system was based on proprietary tools. The performance (F-score) of the system on compound recognition was 84% on the development set and 86% on the test set. The relevancy classification system had an F-score of 86% on the development set and 82% on the test set. Our system can extract chemical compounds from patents and classify their relevance with high performance. This enables the extension of the Reaxys database by means of automation

    The exchange activities of [Fe] hydrogenase (iron–sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases

    Get PDF
    [Fe] hydrogenase (iron–sulfur-cluster-free hydrogenase) catalyzes the reversible reduction of methenyltetrahydromethanopterin (methenyl-H4MPT+) with H2 to methylene-H4MPT, a reaction involved in methanogenesis from H2 and CO2 in many methanogenic archaea. The enzyme harbors an iron-containing cofactor, in which a low-spin iron is complexed by a pyridone, two CO and a cysteine sulfur. [Fe] hydrogenase is thus similar to [NiFe] and [FeFe] hydrogenases, in which a low-spin iron carbonyl complex, albeit in a dinuclear metal center, is also involved in H2 activation. Like the [NiFe] and [FeFe] hydrogenases, [Fe] hydrogenase catalyzes an active exchange of H2 with protons of water; however, this activity is dependent on the presence of the hydride-accepting methenyl-H4MPT+. In its absence the exchange activity is only 0.01% of that in its presence. The residual activity has been attributed to the presence of traces of methenyl-H4MPT+ in the enzyme preparations, but it could also reflect a weak binding of H2 to the iron in the absence of methenyl-H4MPT+. To test this we reinvestigated the exchange activity with [Fe] hydrogenase reconstituted from apoprotein heterologously produced in Escherichia coli and highly purified iron-containing cofactor and found that in the absence of added methenyl-H4MPT+ the exchange activity was below the detection limit of the tritium method employed (0.1 nmol min−1 mg−1). The finding reiterates that for H2 activation by [Fe] hydrogenase the presence of the hydride-accepting methenyl-H4MPT+ is essentially required. This differentiates [Fe] hydrogenase from [FeFe] and [NiFe] hydrogenases, which actively catalyze H2/H2O exchange in the absence of exogenous electron acceptors
    corecore