7 research outputs found

    24-Norursodeoxycholic acid ameliorates experimental alcohol-related liver disease and activates hepatic PPARγ

    No full text
    Background & Aims: Alcohol-related liver disease (ALD) is a global healthcare challenge with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a synthetic bile acid with anti-inflammatory properties in experimental and human cholestatic liver diseases. In the present study, we explored the efficacy of norUDCA in experimental ALD. Methods: NorUDCA was tested in a preventive and therapeutic setting in an experimental ALD model (Lieber–DeCarli diet enriched with ethanol). Liver disease was phenotypically evaluated using histology and biochemical methods, and anti-inflammatory properties and peroxisome proliferator-activated receptor gamma activation by norUDCA were evaluated in cellular model systems. Results: NorUDCA administration ameliorated ethanol-induced liver injury, reduced hepatocyte death, and reduced the expression of hepatic pro-inflammatory cytokines including tumour necrosis factor (Tnf), Il-1β, Il-6, and Il-10. NorUDCA shifted hepatic macrophages towards an anti-inflammatory M2 phenotype. Further, norUDCA administration altered the composition of the intestinal microbiota, specifically increasing the abundance of Roseburia, Enterobacteriaceae, and Clostridum spp. In a therapeutic model, norUDCA also ameliorated ethanol-induced liver injury. Moreover, norUDCA suppressed lipopolysaccharide-induced IL-6 expression in human peripheral blood mononuclear cells and evoked peroxisome proliferator-activated receptor gamma activation. Conclusions: NorUDCA ameliorated experimental ALD, protected against hepatic inflammation, and affected gut microbial commensalism. NorUDCA could serve as a novel therapeutic agent in the future management of patients with ALD. Impact and implications: Alcohol-related liver disease is a global healthcare concern with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a modified bile acid, which was proven to be effective in human cholestatic liver diseases. In the present study, we found a protective effect of norUDCA in experimental alcoholic liver disease. For patients with ALD, norUDCA could be a potential new treatment option

    Dickkopf1 fuels inflammatory cytokine responses

    No full text
    Many human diseases, including cancer, share an inflammatory component but the molecular underpinnings remain incompletely understood. We report that physiological and pathological Dickkopf1 (DKK1) activity fuels inflammatory cytokine responses in cell models, mice and humans. DKK1 maintains the elevated inflammatory tone of cancer cells and is required for mounting cytokine responses following ligation of toll-like and cytokine receptors. DKK1- controlled inflammation derives from cell-autonomous mechanisms, which involve SOCS3- restricted, nuclear RelA (p65) activity. We translate these findings to humans by showing that genetic DKK1 variants are linked to elevated cytokine production across healthy populations. Finally, we find that genetic deletion of DKK1 but not pharmacological neutralization of soluble DKK1 ameliorates inflammation and disease trajectories in a mouse model of endotoxemia. Collectively, our study identifies a cell-autonomous function of DKK1 in the control of the inflammatory response, which is conserved between malignant and nonmalignant cells. Additional studies are required to mechanistically dissect cellular DKK1 trafficking and signaling pathways

    Serine metabolism is crucial for cGAS-STING signaling and viral defense control in the gut

    No full text
    Summary: Inflammatory bowel diseases are characterized by the chronic relapsing inflammation of the gastrointestinal tract. While the molecular causality between endoplasmic reticulum (ER) stress and intestinal inflammation is widely accepted, the metabolic consequences of chronic ER stress on the pathophysiology of IBD remain unclear. By using in vitro, in vivo models, and patient datasets, we identified a distinct polarization of the mitochondrial one-carbon metabolism and a fine-tuning of the amino acid uptake in intestinal epithelial cells tailored to support GSH and NADPH metabolism upon ER stress. This metabolic phenotype strongly correlates with IBD severity and therapy response. Mechanistically, we uncover that both chronic ER stress and serine limitation disrupt cGAS-STING signaling, impairing the epithelial response against viral and bacterial infection and fueling experimental enteritis. Consequently, the antioxidant treatment restores STING function and virus control. Collectively, our data highlight the importance of serine metabolism to allow proper cGAS-STING signaling and innate immune responses upon gut inflammation

    PUFA-induced metabolic enteritis as a fuel for Crohn's disease

    Get PDF
    BACKGROUND & AIMS: Crohn's disease (CD) globally emerges with Westernization of lifestyle and nutritional habits. However, a specific dietary constituent that comprehensively evokes gut inflammation in human IBD remains elusive. Here, we aimed at delineating how increased intake of polyunsaturated fatty acids (PUFAs) in a Western diet, known to impart risk for developing CD, impacts gut inflammation and disease course. We hypothesized that the unfolded protein response and anti-oxidative activity of Glutathione peroxidase 4 (GPX4), which are compromised in human CD epithelium, compensates for metabolic perturbation evoked by dietary PUFAs. METHODS: We phenotyped and mechanistically dissected enteritis evoked by a PUFA-enriched Western diet in two mouse models exhibiting endoplasmic reticulum (ER) stress consequent to intestinal epithelial cell (IEC)-specific deletion of X-box-binding protein 1 (Xbp1) or Gpx4. We translated findings to human CD epithelial organoids and correlated PUFA intake, estimated by a dietary questionnaire or stool metabolomics, with clinical disease course in two independent CD cohorts. RESULTS: PUFA excess in a Western diet potently induced ER stress, driving enteritis in Xbp1-/-IEC and in Gpx4+/-IEC mice. ω-3 and ω-6 PUFAs activated the epithelial endoplasmic reticulum sensor IRE1α by toll-like receptor 2 (TLR2) sensing of oxygen specific epitopes. TLR2-controlled IRE1α activity governed PUFA-induced chemokine production and enteritis. In active human CD, ω-3 and ω-6 PUFAs instigated epithelial chemokine expression and patients displayed a compatible inflammatory stress signature in the serum. Estimated PUFA intake correlated with clinical and biochemical disease activity in a cohort of 160 CD patients, which was similarly demonstrable in an independent metabolomic stool analysis from 199 CD patients. CONCLUSION: We provide evidence for the concept of PUFA-induced metabolic gut inflammation which may worsen the course of human CD. Our findings provide a basis for targeted nutritional therapy
    corecore