298 research outputs found

    Increased risk for other cancers in individuals with Ewing sarcoma and their relatives.

    Get PDF
    BackgroundThere are few reports of the association of other cancers with Ewing sarcoma in patients and their relatives. We use a resource combining statewide genealogy and cancer reporting to provide unbiased risks.MethodsUsing a combined genealogy of 2.3 million Utah individuals and the Utah Cancer Registry (UCR), relative risks (RRs) for cancers of other sites were estimated in 143 Ewing sarcoma patients using a Cox proportional hazards model with matched controls; however, risks in relatives were estimated using internal cohort-specific cancer rates in first-, second-, and third-degree relatives.ResultsCancers of three sites (breast, brain, complex genotype/karyotype sarcoma) were observed in excess in Ewing sarcoma patients. No Ewing sarcoma patients were identified among first-, second-, or third-degree relatives of Ewing sarcoma patients. Significantly increased risk for brain, lung/bronchus, female genital, and prostate cancer was observed in first-degree relatives. Significantly increased risks were observed in second-degree relatives for breast cancer, nonmelanoma eye cancer, malignant peripheral nerve sheath cancer, non-Hodgkin lymphoma, and translocation sarcomas. Significantly increased risks for stomach cancer, prostate cancer, and acute lymphocytic leukemia were observed in third-degree relatives.ConclusionsThis analysis of risk for cancer among Ewing sarcoma patients and their relatives indicates evidence for some increased cancer predisposition in this population which can be used to individualize consideration of potential treatment of patients and screening of patients and relatives

    Discovery of a Companion Candidate in the HD169142 Transition Disk and the Possibility of Multiple Planet Formation

    Get PDF
    We present L' and J-band high-contrast observations of HD169142, obtained with the VLT/NACO AGPM vector vortex coronagraph and the Gemini Planet Imager, respectively. A source located at 0".156+/-0".032 north of the host star (PA=7.4+/-11.3 degrees) appears in the final reduced L' image. At the distance of the star (~145 pc), this angular separation corresponds to a physical separation of 22.7+/-4.7 AU, locating the source within the recently resolved inner cavity of the transition disk. The source has a brightness of L'=12.2+/-0.5 mag, whereas it is not detected in the J band (J>13.8 mag). If its L' brightness arose solely from the photosphere of a companion and given the J-L' color constraints, it would correspond to a 28-32 MJupiter object at the age of the star, according to the COND models. Ongoing accretion activity of the star suggests, however, that gas is left in the inner disk cavity from which the companion could also be accreting. In this case the object could be lower in mass and its luminosity enhanced by the accretion process and by a circumplanetary disk. A lower mass object is more consistent with the observed cavity width. Finally, the observations enable us to place an upper limit on the L'-band flux of a second companion candidate orbiting in the disk annular gap at ~50 AU, as suggested by millimeter observations. If the second companion is also confirmed, HD169142 might be forming a planetary system, with at least two companions opening gaps and possibly interacting with each other.Comment: Accepted to ApJL, see also Biller et al. 201

    Gemini Planet Imager Observational Calibrations VI: Photometric and Spectroscopic Calibration for the Integral Field Spectrograph

    Full text link
    The Gemini Planet Imager (GPI) is a new facility instrument for the Gemini Observatory designed to provide direct detection and characterization of planets and debris disks around stars in the solar neighborhood. In addition to its extreme adaptive optics and corona graphic systems which give access to high angular resolution and high-contrast imaging capabilities, GPI contains an integral field spectrograph providing low resolution spectroscopy across five bands between 0.95 and 2.5 μ\mum. This paper describes the sequence of processing steps required for the spectro-photometric calibration of GPI science data, and the necessary calibration files. Based on calibration observations of the white dwarf HD 8049B we estimate that the systematic error in spectra extracted from GPI observations is less than 5%. The flux ratio of the occulted star and fiducial satellite spots within coronagraphic GPI observations, required to estimate the magnitude difference between a target and any resolved companions, was measured in the HH-band to be Δm=9.23±0.06\Delta m = 9.23\pm0.06 in laboratory measurements and Δm=9.39±0.11\Delta m = 9.39\pm 0.11 using on-sky observations. Laboratory measurements for the YY, JJ, K1K1 and K2K2 filters are also presented. The total throughput of GPI, Gemini South and the atmosphere of the Earth was also measured in each photometric passband, with a typical throughput in HH-band of 18% in the non-coronagraphic mode, with some variation observed over the six-month period for which observations were available. We also report ongoing development and improvement of the data cube extraction algorithm.Comment: 15 pages, 6 figures. Proceedings of the SPIE, 9147-30

    Prognostic Impact of PHIP Copy Number in Melanoma: Linkage to Ulceration

    Get PDF
    Ulceration is an important prognostic factor in melanoma whose biologic basis is poorly understood. Here we assessed the prognostic impact of pleckstrin homology domain-interacting protein (PHIP) copy number and its relationship to ulceration. PHIP copy number was determined using fluorescence in situ hybridization (FISH) in a tissue microarray cohort of 238 melanomas. Elevated PHIP copy number was associated with significantly reduced distant metastasis-free survival (DMFS; P=0.01) and disease-specific survival (DSS; P=0.009) by Kaplan–Meier analyses. PHIP FISH scores were independently predictive of DMFS (P=0.03) and DSS (P=0.03). Increased PHIP copy number was an independent predictor of ulceration status (P=0.04). The combined impact of increased PHIP copy number and tumor vascularity on ulceration status was highly significant (P<0.0001). Stable suppression of PHIP in human melanoma cells resulted in significantly reduced glycolytic activity in vitro, with lower expression of lactate dehydrogenase 5, hypoxia-inducible factor 1 alpha subunit, and vascular endothelial growth factor, and was accompanied by reduced microvessel density in vivo. These results provide further support for PHIP as a molecular prognostic marker of melanoma, and reveal a significant linkage between PHIP levels and ulceration. Moreover, they suggest that ulceration may be driven by increased glycolysis and angiogenesis

    The Ursinus Weekly, December 17, 1969

    Get PDF
    Special centennial issue: Ursinus College\u27s 100th Anniversary, 1869-1969 • Editorial: The first hundred years • Focus: Nora Shuler Helfferich, Ursinus College\u27s oldest living alumnus • Reprinted articles: Pa. Governor Martin salutes President McClure and college at ceremony commemorating seventy-fifth anniversary; Ursinus adopts a war time program; Ursinus recipient of new gateway; Apology for peace; Freshman coed evaluates customs, finds friendly spirit on U.C. campus; Customs are savored; Chaperon, Why? Who?; WSGA is frowning on dungarees, slacks for Ursinus campus wear; When Shriner shrieks Ursinus sheiks come dashing from each dorm; Freshman President snatched by Sophs; Ursinus offers special class • Freeland Hall: Don\u27t let it be forgot • Ursinus raises 2,350,000;2,350,000; 550,000 still needed • Search into history substantiates claim of second oldest graduate that Freeland was everything • Ursinus administrators analyze past, present, and future • 1969 season climaxes 76 years • Mangan wins little All-American mention • Bears\u27 football since 1893 • Ray Gurzynski pilots Bear Harriers to 45-4 mark, two championships • Fifty years of girls\u27 field hockey at UC: Bearites to Snell-belles and champs • Albert leads UC Harriers to MAC championship • Footmen end season with 6-win record • 1969 MAC grid statistics • Concise history of Ursinus College: 1869 - present • Ursinus College: One century old, before and afterhttps://digitalcommons.ursinus.edu/weekly/1153/thumbnail.jp

    Bringing "The Moth" to Light: A Planet-Sculpting Scenario for the HD 61005 Debris Disk

    Full text link
    The HD 61005 debris disk ("The Moth") stands out from the growing collection of spatially resolved circumstellar disks by virtue of its unusual swept-back morphology, brightness asymmetries, and dust ring offset. Despite several suggestions for the physical mechanisms creating these features, no definitive answer has been found. In this work, we demonstrate the plausibility of a scenario in which the disk material is shaped dynamically by an eccentric, inclined planet. We present new Keck NIRC2 scattered-light angular differential imaging of the disk at 1.2-2.3 microns that further constrains its outer morphology (projected separations of 27-135 AU). We also present complementary Gemini Planet Imager 1.6 micron total intensity and polarized light detections that probe down to projected separations less than 10 AU. To test our planet-sculpting hypothesis, we employed secular perturbation theory to construct parent body and dust distributions that informed scattered-light models. We found that this method produced models with morphological and photometric features similar to those seen in the data, supporting the premise of a planet-perturbed disk. Briefly, our results indicate a disk parent body population with a semimajor axis of 40-52 AU and an interior planet with an eccentricity of at least 0.2. Many permutations of planet mass and semimajor axis are allowed, ranging from an Earth mass at 35 AU to a Jupiter mass at 5 AU.Comment: Accepted to AJ; added Figure 5 and minor text edit

    Type II Supernovae as Probes of Cosmology

    Full text link
    - Constraining the cosmological parameters and understanding Dark Energy have tremendous implications for the nature of the Universe and its physical laws. - The pervasive limit of systematic uncertainties reached by cosmography based on Cepheids and Type Ia supernovae (SNe Ia) warrants a search for complementary approaches. - Type II SNe have been shown to offer such a path. Their distances can be well constrained by luminosity-based or geometric methods. Competing, complementary, and concerted efforts are underway, to explore and exploit those objects that are extremely well matched to next generation facilities. Spectroscopic follow-up will be enabled by space- based and 20-40 meter class telescopes. - Some systematic uncertainties of Type II SNe, such as reddening by dust and metallicity effects, are bound to be different from those of SNe Ia. Their stellar progenitors are known, promising better leverage on cosmic evolution. In addition, their rate - which closely tracks the ongoing star formation rate - is expected to rise significantly with look- back time, ensuring an adequate supply of distant examples. - These data will competitively constrain the dark energy equation of state, allow the determination of the Hubble constant to 5%, and promote our understanding of the processes involved in the last dramatic phases of massive stellar evolution.Comment: Science white paper, submitted to the Decadal committee Astro201

    Automated data processing architecture for the Gemini Planet Imager Exoplanet Survey

    Full text link
    The Gemini Planet Imager Exoplanet Survey (GPIES) is a multi-year direct imaging survey of 600 stars to discover and characterize young Jovian exoplanets and their environments. We have developed an automated data architecture to process and index all data related to the survey uniformly. An automated and flexible data processing framework, which we term the Data Cruncher, combines multiple data reduction pipelines together to process all spectroscopic, polarimetric, and calibration data taken with GPIES. With no human intervention, fully reduced and calibrated data products are available less than an hour after the data are taken to expedite follow-up on potential objects of interest. The Data Cruncher can run on a supercomputer to reprocess all GPIES data in a single day as improvements are made to our data reduction pipelines. A backend MySQL database indexes all files, which are synced to the cloud, and a front-end web server allows for easy browsing of all files associated with GPIES. To help observers, quicklook displays show reduced data as they are processed in real-time, and chatbots on Slack post observing information as well as reduced data products. Together, the GPIES automated data processing architecture reduces our workload, provides real-time data reduction, optimizes our observing strategy, and maintains a homogeneously reduced dataset to study planet occurrence and instrument performance.Comment: 21 pages, 3 figures, accepted in JATI
    • …
    corecore