41 research outputs found

    Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates

    Full text link
    Experimental evidence indicates that the superconducting transition in high TcT_c cuprates is an 'undressing' transition. Microscopic mechanisms giving rise to this physics were discussed in the first paper of this series. Here we discuss the calculation of the single particle Green's function and spectral function for Hamiltonians describing undressing transitions in the normal and superconducting states. A single parameter, Υ\Upsilon, describes the strength of the undressing process and drives the transition to superconductivity. In the normal state, the spectral function evolves from predominantly incoherent to partly coherent as the hole concentration increases. In the superconducting state, the 'normal' Green's function acquires a contribution from the anomalous Green's function when Υ \Upsilon is non-zero; the resulting contribution to the spectral function is positivepositive for hole extraction and negativenegative for hole injection. It is proposed that these results explain the observation of sharp quasiparticle states in the superconducting state of cuprates along the (π,0)(\pi,0) direction and their absence along the (π,π)(\pi,\pi) direction.Comment: figures have been condensed in fewer pages for easier readin

    Interplane Transport and Superfluid Density in Layered Superconductors

    Full text link
    We report on generic trends in the behavior of the interlayer penetration depth λc\lambda_c of several different classes of quasi two-dimensional superconductors including cuprates, Sr2_2RuO4_4, transition metal dichalcogenides and organic materials of the (BEDT−TTF)2X(BEDT-TTF)_2X-series. Analysis of these trends reveals two distinct patterns in the scaling between the values of λc\lambda_c and the magnitude of the DC conductivity: one realized in the systems with a Fermi liquid (FL) ground state and the other seen in systems with a marked deviation from the FL response. The latter pattern is found primarily in under-doped cuprates and indicates a dramatic enhancement (factor ≃102\simeq 10^2) of the energy scale ΩC\Omega_C associated with the formation of the condensate compared to the data for the FL materials. We discuss implications of these results for the understanding of pairing in high-TcT_c cuprates.Comment: 4 pages, 2 figure

    Superconducting Fluctuation investigated by THz Conductivity of La2−x_{2-x}Srx_xCuO4_4 Thin Films

    Full text link
    Frequency-dependent terahertz conductivities of La2−x_{2-x}Srx_xCuO4_4 thin films with various carrier concentrations were investigated. The imaginary part of the complex conductivity considerably increased from far above a zero-resistance superconducting transition temperature, TczeroT_\text{c}^\text{zero}, because of the existence of the fluctuating superfluid density with a short lifetime. The onset temperature of the superconducting fluctuation is at most ∼2Tczero\sim 2T_\text{c}^\text{zero} for underdoped samples, which is consistent with the previously reported analysis of microwave conductivity. The superconducting fluctuation was not enhanced under a 0.5 T magnetic field. We also found that the temperature dependence of the superconducting fluctuation was sensitive to the carrier concentration of La2−x_{2-x}Srx_xCuO4_4, which reflects the difference in the nature of the critical dynamics near the superconducting transition temperature. Our results suggest that the onset temperature of the Nernst signal is not related to the superconducting fluctuation we argued in this paper.Comment: J. Phys. Soc. Jpn. in pres

    3D Raman Imaging and Correlative Scanning Microscopy Techniques Workhsop

    No full text
    The workshop will give a detailed introduction to the operational principles and instrumental configurations relevant to confocal Raman Imaging and Scanning Microscopy (SEM, AFM, SNOM, Pulsed Force Mode). Our Speakers will cover several aspects of Raman and SPM imaging and their fields of applications. An extensive system demonstration gives the participants the opportunity to see this knowledge applied using an alpha300 RSA+ (combined AFM, SNOM & Confocal Raman Microscope)

    Polymethine dyes as novel efficient infrared electroluminescence materials

    No full text

    High-energy angle resolved reflection spectroscopy on three-dimensional photonic crystals of self-organized polymeric nanospheres

    Get PDF
    We report on the optical characterization of three-dimensional opal-like photonic crystals made by self-organized nanospheres of poly[styrene-(co-2-hydroxyethyl methacrylate)] having a face centred cubic (fcc) structure oriented along the [111] direction. A detailed optical characterization of the samples is presented using angle resolved reflection spectroscopy in specular geometry. The investigated energies are between a/lambda= 0.5 and a/lambda= 1.5 (where a is the lattice parameter and lambda is the light wavelength), a region in which both first and second-order Bragg diffraction are expected. Some interesting features as branching of the Bragg peak dispersion and high energy reflection peaks are revealed. We compare the experimental data with theoretical calculations using both Bragg diffraction and band structure approach. A comparison with recent results reported in the literature is also presented. (c) 2008 Optical Society of America

    Spectroscopic ellipsometry analyses of thin films in different environments: An innovative "reverse side" approach allowing multi angle measurements

    No full text
    An innovative ellipsometer sample holder has been designed and tested in order to measure thin films optical properties under different environments and so infer the porosity through effective medium approximation models. Compared to commercial cells that require a fixed angle of incidence or a cell with a cylindrical geometry, we present a simple cell in which the sample is mounted in "reverse side", allowing multiple angle analyses without the need for cell windows. Standard ellipsometry measurements are compared to the "reverse side" approach in order to confirm the feasibility of this new procedure, obtaining the same refractive index dispersion curves in both cases. Then different samples have been tested in "reverse side" under different environments to measure porosity. The multiangle approach has been found useful to improve the fitting of the experimental data by reducing both the fitting error and the correlation between parameters
    corecore