5,542 research outputs found

    The art and science of black hole mergers

    Full text link
    The merger of two black holes is one of the most extraordinary events in the natural world. Made of pure gravity, the holes combine to form a single hole, emitting a strong burst of gravitational radiation. Ground-based detectors are currently searching for such bursts from holes formed in the evolution of binary stars, and indeed the very first gravitational wave event detected may well be a black-hole merger. The space-based LISA detector is being designed to search for such bursts from merging massive black holes in the centers of galaxies, events that would emit many thousands of solar masses of pure gravitational wave energy over a period of only a few minutes. To assist gravitational wave astronomers in their searches, and to be in a position to understand the details of what they see, numerical relativists are performing supercomputer simulations of these events. I review here the state of the art of these simulations, what we have learned from them so far, and what challenges remain before we have a full prediction of the waveforms to be expected from these events.Comment: 12 pages, 3 figures, Proceedings of "Growing Black Holes", Garching 21-25 June 200

    Introduction to the Analysis of Low-Frequency Gravitational Wave Data

    Get PDF
    The space-based gravitational wave detector LISA will observe in the low-frequency gravitational-wave band (0.1 mHz up to 1 Hz). LISA will search for a variety of expected signals, and when it detects a signal it will have to determine a number of parameters, such as the location of the source on the sky and the signal's polarisation. This requires pattern-matching, called matched filtering, which uses the best available theoretical predictions about the characteristics of waveforms. All the estimates of the sensitivity of LISA to various sources assume that the data analysis is done in the optimum way. Because these techniques are unfamiliar to many young physicists, I use the first part of this lecture to give a very basic introduction to time-series data analysis, including matched filtering. The second part of the lecture applies these techniques to LISA, showing how estimates of LISA's sensitivity can be made, and briefly commenting on aspects of the signal-analysis problem that are special to LISA.Comment: 20 page

    Sources of radiation from neutron stars

    Get PDF
    I give a brief introduction to the problem of detecting gravitational radiation from neutron stars. After a review of the mechanisms by which such stars may produce radiation, I consider the different search strategies appropriate to the different kinds of sources: isolated known pulsars, neutron stars in binaries, and unseen neutron stars. The problem of an all-sky survey for unseen stars is the most taxing one that we face in analysing data from interferometers. I describe the kinds of hierarchical methods that are now being investigated to reach the maximal sensitivity, and I suggest a replacement for standard Fourier-transform search methods that requires fewer floating-point operations for Fourier-based searches over large parameter spaces, and in addition is highly parallelizable, working just as well on a loosely coupled network of workstations as on a tightly coupled parallel computer.Comment: 11 pages, no figure

    Getting Ready for GEO600 Data

    Get PDF
    Data of good quality is expected from a number of gravitational wave detectors within the next two years. One of these, GEO600, has special capabilities, such as narrow-band operation. I describe here the preparations that are currently being made for the analysis of GEO600 data.Comment: 17 pages, 7 figures, proceedings of Yukawa International Seminar 199

    Gravitational Wave Astronomy: Delivering on the Promises

    Get PDF
    Now that LIGO and Virgo have begun to detect gravitational wave events with regularity, the field of gravitational wave astronomy is beginning to realise its promise. Binary black holes and, very recently, binary neutron stars have been observed, and we are already learning much from them. The future, with improved sensitivity, more detectors, and detectors like LISA in different frequency bands, has even more promise to open a completely hidden side of the Universe to our exploration.Comment: 12 pages, 1 figure, presented at a discussion meeting "Promises of gravitational wave astronomy" held at the Royal Society London, 11 September 201

    Low-Frequency Sources of Gravitational Waves: A Tutorial

    Get PDF
    Gravitational wave detectors in space, particularly the LISA project, can study a rich variety of astronomical systems whose gravitational radiation is not detectable from the ground, because it is emitted in the low-frequency gravitational wave band (0.1 mHz to 1 Hz) that is inaccessible to ground-based detectors. Sources include binary systems in our Galaxy and massive black holes in distant galaxies. The radiation from many of these sources will be so strong that it will be possible to make remarkably detailed studies of the physics of the systems. These studies will have importance both for astrophysics (most notably in binary evolution theory and models for active galaxies) and for fundamental physics. In particular, it should be possible to make decisive measurements to confirm the existence of black holes and to test, with accuracies better than 1%, general relativity's description of them. Other observations can have fundamental implications for cosmology and for physical theories of the unification of forces. In order to understand these conclusions, one must know how to estimate the gravitational radiation produced by different sources. In the first part of this lecture I review the dynamics of gravitational wave sources, and I derive simple formulas for estimating wave amplitudes and the reaction effects on sources of producing this radiation. With these formulas one can estimate, usually to much better than an order of magnitude, the physics of most of the interesting low-frequency sources. In the second part of the lecture I use these estimates to discuss, in the context of the expected sensitivity of LISA, what we can learn by from observations of binary systems, massive black holes, and the early Universe itself.Comment: 12 pages, 2 figure

    Sources of gravitational waves

    Get PDF
    Sources of low frequency gravitational radiation are reviewed from an astrophysical point of view. Cosmological sources include the formation of massive black holes in galactic nuclei, the capture by such holes of neutron stars, the coalescence of orbiting pairs of giant black holes, and various means of producing a stochastic background of gravitational waves in the early universe. Sources local to our Galaxy include various kinds of close binaries and coalescing binaries. Gravitational wave astronomy can provide information that no other form of observing can supply; in particular, the positive identification of a cosmological background originating in the early universe would be an event as significant as was the detection of the cosmic microwave background

    Time-Symmetric ADI and Causal Reconnection: Stable Numerical Techniques for Hyperbolic Systems on Moving Grids

    Get PDF
    Moving grids are of interest in the numerical solution of hydrodynamical problems and in numerical relativity. We show that conventional integration methods for the simple wave equation in one and more than one dimension exhibit a number of instabilities on moving grids. We introduce two techniques, which we call causal reconnection and time-symmetric ADI, which together allow integration of the wave equation with absolute local stability in any number of dimensions on grids that may move very much faster than the wave speed and that can even accelerate. These methods allow very long time-steps, are fully second-order accurate, and offer the computational efficiency of operator-splitting.Comment: 45 pages, 19 figures. Published in 1994 but not previously available in the electronic archive

    Loosely coherent searches for sets of well-modeled signals

    Get PDF
    We introduce a high-performance implementation of a loosely coherent statistic sensitive to signals spanning a finite-dimensional manifold in parameter space. Results from full scale simulations on Gaussian noise are discussed, as well as implications for future searches for continuous gravitational waves. We demonstrate an improvement of more than an order of magnitude in analysis speed over previously available algorithms. As searches for continuous gravitational waves are computationally limited, the large speedup results in gain in sensitivity
    • …
    corecore