527 research outputs found

    The Strain-Encoded Relationship between PrPSc Replication, Stability and Processing in Neurons is Predictive of the Incubation Period of Disease

    Get PDF
    Prion strains are characterized by differences in the outcome of disease, most notably incubation period and neuropathological features. While it is established that the disease specific isoform of the prion protein, PrPSc, is an essential component of the infectious agent, the strain-specific relationship between PrPSc properties and the biological features of the resulting disease is not clear. To investigate this relationship, we examined the amplification efficiency and conformational stability of PrPSc from eight hamster-adapted prion strains and compared it to the resulting incubation period of disease and processing of PrPSc in neurons and glia. We found that short incubation period strains were characterized by more efficient PrPSc amplification and higher PrPSc conformational stabilities compared to long incubation period strains. In the CNS, the short incubation period strains were characterized by the accumulation of N-terminally truncated PrPSc in the soma of neurons, astrocytes and microglia in contrast to long incubation period strains where PrPSc did not accumulate to detectable levels in the soma of neurons but was detected in glia similar to short incubation period strains. These results are inconsistent with the hypothesis that a decrease in conformational stability results in a corresponding increase in replication efficiency and suggest that glia mediated neurodegeneration results in longer survival times compared to direct replication of PrPSc in neurons

    Subacromial impingement in patients with whiplash injury to the cervical spine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Impingement syndrome and shoulder pain have been reported to occur in a proportion of patients following whiplash injuries to the neck. In this study we aim to examine these findings to establish the association between subacromial impingement and whiplash injuries to the cervical spine.</p> <p>Methods and results</p> <p>We examined 220 patients who had presented to the senior author for a medico-legal report following a whiplash injury to the neck. All patients were assessed for clinical evidence of subacromial impingement. 56/220 patients (26%) had developed shoulder pain following the injury; of these, 11/220 (5%) had clinical evidence of impingement syndrome. Only 3/11 patients (27%) had the diagnosis made prior to evaluation for their medico-legal report. In the majority, other clinicians had overlooked the diagnosis. The seatbelt shoulder was involved in 83% of cases (p < 0.03).</p> <p>Conclusion</p> <p>After a neck injury a significant proportion of patients present with shoulder pain, some of whom have treatable shoulder pathology such as impingement syndrome. The diagnosis is, however, frequently overlooked and shoulder pain is attributed to pain radiating from the neck resulting in long delays before treatment. It is important that this is appreciated and patients are specifically examined for signs of subacromial impingement after whiplash injuries to the neck. Direct seatbelt trauma to the shoulder is one possible explanation for its aetiology.</p

    Political brand image: an investigation into the operationalisation of the external orientation of David Cameron’s Conservative brand

    Get PDF
    This paper seeks to address the limited understanding of how to operationalise the external brand image of a political brand. More specifically, this research critically assesses the transfer potential of the six variables of brand image by Bosch, Venter, Han and Boshoff to deconstruct the UK Conservative Party brand from the perspective of young people aged 18–24 years during the 2010 UK General Election campaign. This research demonstrates the applicability of the six variables otherwise known as the ‘brand image framework’ to the political environment. However, the application of the brand image framework in its original conceptualisation proved problematic. Many of the brand image variables were clarified, rearticulated and simplified to address the political context. This refined conceptualisation provided an in-depth understanding of how to investigate the political brand image of David Cameron’s Conservative Party. This study addresses the paucity of research that operationalises external brand image and provides practitioners and academics within and beyond the context of political branding a mechanism to understand the external orientation of brands. This research may also be used by political and non-political brands as a basis to explore external brand image and compare its consistency with internal brand identity

    Metabolic compensation activates pro-survival mTORC1 signaling upon 3-phosphoglycerate dehydrogenase inhibition in osteosarcoma

    Get PDF
    Osteosarcoma is the most common pediatric and adult primary malignant bone cancer. Curative regimens target the folate pathway, downstream of serine metabolism, with high-dose methotrexate. Here, the rate-limiting enzyme in the biosynthesis of serine from glucose, 3-phosphoglycerate dehydrogenase (PHGDH), is examined, and an inverse correlation between PHGDH expression and relapse-free and overall survival in osteosarcoma patients is found. PHGDH inhibition in osteosarcoma cell lines attenuated cellular proliferation without causing cell death, prompting a robust metabolic analysis to characterize pro-survival compensation. Using metabolomic and lipidomic profiling, cellular response to PHGDH inhibition is identified as accumulation of unsaturated lipids, branched chain amino acids, and methionine cycle intermediates, leading to activation of pro-survival mammalian target of rapamycin complex 1 (mTORC1) signaling. Increased mTORC1 activation sensitizes cells to mTORC1 pathway inhibition, resulting in significant, synergistic cell death in vitro and in vivo. Identifying a therapeutic combination for PHGDH-high cancers offers preclinical justification for a dual metabolism-based combination therapy for osteosarcoma

    Drying of a Microdroplet of Water Suspension of Nanoparticles: from Surface Aggregates to Microcrystal

    Full text link
    The method of formation of nanoparticle aggregates such as high-coverage spherical shells of microspheres or 3-D micro crystals grown in the geometry unaffected by a substrate is described. In the reported experiment, the evaporation of single levitated water droplet containing 200 nm diameter polystyrene spheres was studied. Successive stages of the drying process were discussed by analyzing the intensity of light elastically scattered by the evaporating droplet. The numerically simulated self-assembly coincides nicely with the observed morphologies resulting from transformation of a droplet of suspension into a solid microcrystal via kinetically driven self-assembly of nanostructures.Comment: 5 pages, 6 figure

    Political branding: sense of identity or identity crisis? An investigation of the transfer potential of the brand identity prism to the UK Conservative Party

    Get PDF
    Brands are strategic assets and key to achieving a competitive advantage. Brands can be seen as a heuristic device, encapsulating a series of values that enable the consumer to make quick and efficient choices. More recently, the notion of a political brand and the rhetoric of branding have been widely adopted by many political parties as they seek to differentiate themselves, and this has led to an emerging interest in the idea of the political brand. Therefore, this paper examines the UK Conservative Party brand under David Cameron’s leadership and examines the applicability of Kapferer’s brand identity prism to political branding. This paper extends and operationalises the brand identity prism into a ‘political brand identity network’ which identifies the inter-relatedness of the components of the corporate political brand and the candidate political brand. Crucial for practitioners, this model can demonstrate how the brand is presented and communicated to the electorate and serves as a useful mechanism to identify consistency within the corporate and candidate political brands

    Opportunities and challenges to engineer 3D models of tumor-adaptive immune interactions

    Get PDF
    Augmenting adaptive immunity is a critical goal for developing next-generation cancer therapies. T and B cells infiltrating the tumor dramatically influence cancer progression through complex interactions with the local microenvironment. Cancer cells evade and limit these immune responses by hijacking normal immunologic pathways. Current experimental models using conventional primary cells, cell lines, or animals have limitations for studying cancer-immune interactions directly relevant to human biology and clinical translation. Therefore, engineering methods to emulate such interplay at local and systemic levels are crucial to expedite the development of better therapies and diagnostic tools. In this review, we discuss the challenges, recent advances, and future directions toward engineering the tumor-immune microenvironment (TME), including key elements of adaptive immunity. We first offer an overview of the recent research that has advanced our understanding of the role of the adaptive immune system in the tumor microenvironment. Next, we discuss recent developments in 3D in-vitro models and engineering approaches that have been used to study the interaction of cancer and stromal cells with B and T lymphocytes. We summarize recent advancement in 3D bioengineering and discuss the need for 3D tumor models that better incorporate elements of the complex interplay of adaptive immunity and the tumor microenvironment. Finally, we provide a perspective on current challenges and future directions for modeling cancer-immune interactions aimed at identifying new biological targets for diagnostics and therapeutics

    About females and males: continuity and discontinuity in flies

    Full text link
    Through the decades of relentless and dedicated studies in Drosophila melanogaster, the pathway that governs sexual development has been elucidated in great detail and has become a paradigm in understanding fundamental cell-fate decisions. However, recent phylogenetic studies show that the molecular strategy used in Drosophila deviates in some important aspects from those found in other dipteran flies and suggest that the Drosophila pathway is likely to be a derivative of a simpler and more common principle. In this essay, I will discuss the evolutionary plasticity of the sex-determining pathway based on studies in the common housefly, Musca domestica. Diversification appears to primarily arise from subtle differences in the regulation of the key switch gene transformer at the top of the pathway. On the basis of these findings I propose a new idea on how the Drosophila pathway may have evolved from a more archetypal system such as in M. domestica. In essence, the arrival of an X counting mechanism mediated by Sex-lethal to compensate for X linked gene dose differences set the stage for an intimate coupling of the two pathways. Its precedent recruitment to the dosage compensation pathway allowed for an intervention in the regulation of transformer where it gradually and eventually' completely substituted for a need of transformer autoregulation

    Mathematical Modeling of Epicardial RF Ablation of Atrial Tissue with Overlying Epicardial Fat

    Get PDF
    The efficacy of treating atrial fibrillation by RF ablation on the epicardial surface is currently under question due to the presence of epicardial adipose tissue interposed between the ablation electrode and target site (atrial wall). The problem is probably caused by the electrical conductivity of the fat (0.02 S/m) being lower than that of the atrial tissue (0.4-0.6 S/m). Since our objective is to improve epicardial RF ablation techniques, we planned a study based on a two-dimensional mathematical model including an active electrode, a fragment of epicardial fat over a fragment of atrial tissue, and a section of atrium with circulating blood. Different procedures for applying RF power were studied, such as varying the frequency, using a cooled instead of a dry electrode, and different modes of controlling RF power (constant current, temperature and voltage) for different values of epicardial fat thickness. In general, the results showed that the epicardial fat layer seriously impedes the passage of RF current, thus reducing the effectiveness of atrial wall RF ablation
    • 

    corecore