371 research outputs found

    Osmotic stress-dependent serine phosphorylation of the histidine kinase homologue DokA

    Get PDF
    BACKGROUND: Two-component systems consisting of histidine kinases and their corresponding receivers are widespread in bacterial signal transduction. In the past few years, genes coding for homologues of two-component systems were also discovered in eukaryotic organisms. DokA, a homologue of bacterial histidine kinases, is an element of the osmoregulatory pathway in the amoeba Dictyostelium. The work described here addresses the question whether DokA is phosphorylated in vivo in response to osmotic stress. RESULTS: We have endogenously overexpressed individual domains of DokA to investigate post-translational modification of the protein in response to osmotic shock in vivo. Dictyostelium cells were labeled with [(32)P]-orthophosphate, exposed to osmotic stress and DokA fragments were subsequently isolated by immunoprecipitation. Thus, a stress-dependent phosphorylation could be demonstrated, with the site of phosphorylation being located in the kinase domain. We demonstrate biochemically that the phosphorylated amino acid is serine, and by mutational analysis that the phosphorylation reaction is not due to an autophosphorylation of DokA. Furthermore, mutation of the conserved histidine did not affect the osmostress-dependent phosphorylation reaction. CONCLUSIONS: A stimulus-dependent serine phosphorylation of a eukaryotic histidine kinase homologue was demonstrated for the first time in vivo. That implies that DokA, although showing typical structural features of a bacterial two-component system, might be part of a eukaryotic signal transduction pathway that involves serine/threonine kinases

    Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea : research article

    Get PDF
    Background Differential expression of genes can be regulated on many different levels. Most global studies of gene regulation concentrate on transcript level regulation, and very few global analyses of differential translational efficiencies exist. The studies have revealed that in Saccharomyces cerevisiae, Arabidopsis thaliana, and human cell lines translational regulation plays a significant role. Additional species have not been investigated yet. Particularly, until now no global study of translational control with any prokaryotic species was available. Results A global analysis of translational control was performed with two haloarchaeal model species, Halobacterium salinarum and Haloferax volcanii. To identify differentially regulated genes, exponentially growing and stationary phase cells were compared. More than 20% of H. salinarum transcripts are translated with non-average efficiencies. By far the largest group is comprised of genes that are translated with above-average efficiency specifically in exponential phase, including genes for many ribosomal proteins, RNA polymerase subunits, enzymes, and chemotaxis proteins. Translation of 1% of all genes is specifically repressed in either of the two growth phases. For comparison, DNA microarrays were also used to identify differential transcriptional regulation in H. salinarum, and 17% of all genes were found to have non-average transcript levels in exponential versus stationary phase. In H. volcanii, 12% of all genes are translated with non-average efficiencies. The overlap with H. salinarum is negligible. In contrast to H. salinarum, 4.6% of genes have non-average translational efficiency in both growth phases, and thus they might be regulated by other stimuli than growth phase. Conclusions For the first time in any prokaryotic species it was shown that a significant fraction of genes is under differential translational control. Groups of genes with different regulatory patterns were discovered. However, neither the fractions nor the identity of regulated genes are conserved between H. salinarum and H. volcanii, indicating that prokaryotes as well as eukaryotes use differential translational control for the regulation of gene expression, but that the identity of regulated genes is not conserved For 70 H. salinarum genes potentiation of regulation was observed, but for the majority of regulated genes either transcriptional or translational regulation is employed

    Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Differential expression of genes can be regulated on many different levels. Most global studies of gene regulation concentrate on transcript level regulation, and very few global analyses of differential translational efficiencies exist. The studies have revealed that in <it>Saccharomyces cerevisiae</it>, <it>Arabidopsis thaliana</it>, and human cell lines translational regulation plays a significant role. Additional species have not been investigated yet. Particularly, until now no global study of translational control with any prokaryotic species was available.</p> <p>Results</p> <p>A global analysis of translational control was performed with two haloarchaeal model species, <it>Halobacterium salinarum </it>and <it>Haloferax volcanii</it>. To identify differentially regulated genes, exponentially growing and stationary phase cells were compared.</p> <p>More than 20% of <it>H. salinarum </it>transcripts are translated with non-average efficiencies. By far the largest group is comprised of genes that are translated with above-average efficiency specifically in exponential phase, including genes for many ribosomal proteins, RNA polymerase subunits, enzymes, and chemotaxis proteins. Translation of 1% of all genes is specifically repressed in either of the two growth phases. For comparison, DNA microarrays were also used to identify differential transcriptional regulation in <it>H. salinarum</it>, and 17% of all genes were found to have non-average transcript levels in exponential versus stationary phase.</p> <p>In <it>H. volcanii</it>, 12% of all genes are translated with non-average efficiencies. The overlap with <it>H. salinarum </it>is negligible. In contrast to <it>H. salinarum</it>, 4.6% of genes have non-average translational efficiency in both growth phases, and thus they might be regulated by other stimuli than growth phase.</p> <p>Conclusion</p> <p>For the first time in any prokaryotic species it was shown that a significant fraction of genes is under differential translational control. Groups of genes with different regulatory patterns were discovered. However, neither the fractions nor the identity of regulated genes are conserved between <it>H. salinarum </it>and <it>H. volcanii</it>, indicating that prokaryotes as well as eukaryotes use differential translational control for the regulation of gene expression, but that the identity of regulated genes is not conserved.</p> <p>For 70 <it>H. salinarum </it>genes potentiation of regulation was observed, but for the majority of regulated genes either transcriptional or translational regulation is employed.</p

    Haloquadratum walsbyi : Limited Diversity in a Global Pond

    Get PDF
    BACKGROUND: Haloquadratum walsbyi commonly dominates the microbial flora of hypersaline waters. Its cells are extremely fragile squares requiring >14%(w/v) salt for growth, properties that should limit its dispersal and promote geographical isolation and divergence. To assess this, the genome sequences of two isolates recovered from sites at near maximum distance on Earth, were compared. PRINCIPAL FINDINGS: Both chromosomes are 3.1 MB in size, and 84% of each sequence was highly similar to the other (98.6% identity), comprising the core sequence. ORFs of this shared sequence were completely synteneic (conserved in genomic orientation and order), without inversion or rearrangement. Strain-specific insertions/deletions could be precisely mapped, often allowing the genetic events to be inferred. Many inferred deletions were associated with short direct repeats (4-20 bp). Deletion-coupled insertions are frequent, producing different sequences at identical positions. In cases where the inserted and deleted sequences are homologous, this leads to variant genes in a common synteneic background (as already described by others). Cas/CRISPR systems are present in C23(T) but have been lost in HBSQ001 except for a few spacer remnants. Numerous types of mobile genetic elements occur in both strains, most of which appear to be active, and with some specifically targetting others. Strain C23(T) carries two ∼6 kb plasmids that show similarity to halovirus His1 and to sequences nearby halovirus/plasmid gene clusters commonly found in haloarchaea. CONCLUSIONS: Deletion-coupled insertions show that Hqr. walsbyi evolves by uptake and precise integration of foreign DNA, probably originating from close relatives. Change is also driven by mobile genetic elements but these do not by themselves explain the atypically low gene coding density found in this species. The remarkable genome conservation despite the presence of active systems for genome rearrangement implies both an efficient global dispersal system, and a high selective fitness for this species

    inGAP: an integrated next-generation genome analysis pipeline

    Get PDF
    Summary: We develop a novel mining pipeline, Integrative Next-generation Genome Analysis Pipeline (inGAP), guided by a Bayesian principle to detect single nucleotide polymorphisms (SNPs), insertion/deletions (indels) by comparing high-throughput pyrosequencing reads with a reference genome of related organisms. inGAP can be applied to the mapping of both Roche/454 and Illumina reads with no restriction of read length. Experiments on simulated and experimental data show that this pipeline can achieve overall 97% accuracy in SNP detection and 94% in the finding of indels. All the detected SNPs/indels can be further evaluated by a graphical editor in our pipeline. inGAP also provides functions of multiple genomes comparison and assistance of bacterial genome assembly

    BACCardI - a tool for the validation of genomic assemblies, assisting genome finishing and intergenome comparison

    Get PDF
    Bartels D, Kespohl S, Albaum S, et al. BACCardI - a tool for the validation of genomic assemblies, assisting genome finishing and intergenome comparison. Bioinformatics. 2005;21(7):853-859.Summary: We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. Motivation: Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries

    Guiding center picture of magnetoresistance oscillations in rectangular superlattices

    Full text link
    We calculate the magneto-resistivities of a two-dimensional electron gas subjected to a lateral superlattice (LSL) of rectangular symmetry within the guiding-center picture, which approximates the classical electron motion as a rapid cyclotron motion around a slowly drifting guiding center. We explicitly evaluate the velocity auto-correlation function along the trajectories of the guiding centers, which are equipotentials of a magnetic-field dependent effective LSL potential. The existence of closed equipotentials may lead to a suppression of the commensurability oscillations, if the mean free path and the LSL modulation potential are large enough. We present numerical and analytical results for this suppression, which allow, in contrast to previous quantum arguments, a classical explanation of similar suppression effects observed experimentally on square-symmetric LSL. Furthermore, for rectangular LSLs of lower symmetry they lead us to predict a strongly anisotropic resistance tensor, with high- and low-resistance directions which can be interchanged by tuning the externally applied magnetic field.Comment: 12 pages, 9 figure
    corecore