796 research outputs found

    Transformation media that rotate electromagnetic fields

    Get PDF
    We suggest a way to manipulate electromagnetic wave by introducing a rotation mapping of coordinates that can be realized by a specific transformation of permittivity and permeability of a shell surrounding an enclosed domain. Inside the enclosed domain, the information from outside will appear as if it comes from a different angle. Numerical simulations were performed to illustrate these properties.Comment: 5 pages, 3 figure

    Design of Electromagnetic Cloaks and Concentrators Using Form-Invariant Coordinate Transformations of Maxwell's Equations

    Full text link
    The technique of applying form-invariant, spatial coordinate transformations of Maxwell's equations can facilitate the design of structures with unique electromagnetic or optical functionality. Here, we illustrate the transformation-optical approach in the designs of a square electromagnetic cloak and an omni-directional electromagnetic field concentrator. The transformation equations are described and the functionality of the devices is numerically confirmed by two-dimensional finite element simulations. The two devices presented demonstrate that the transformation optic approach leads to the specification of complex, anisotropic and inhomogeneous materials with well directed and distinct electromagnetic behavior.Comment: submitted to "Photonics and Nanostructures", Special Issue "PECS VII", Elsevie

    Full-wave simulations of electromagnetic cloaking structures

    Get PDF
    Based on a coordinate transformation approach, Pendry {\it et al.} have reported electromagnetically anisotropic and inhomogeneous shells that, in theory, completely shield an interior structure of arbitrary size from electromagnetic fields without perturbing the external fields. We report full-wave simulations of the cylindrical version of this cloaking structure using ideal and nonideal (but physically realizable) electromagnetic parameters in an effort to understand the challenges of realizing such a structure in practice. The simulations indicate that the performance of the electromagnetic cloaking structure is not especially sensitive to modest permittivity and permeability variations. This is in contrast to other applications of engineered electromagnetic materials, such as subwavelength focusing using negative refractive index materials. The cloaking performance degrades smoothly with increasing loss, and effective low-reflection shielding can be achieved with a cylindrical shell composed of an eight (homogeneous) layer approximation of the ideal continuous medium

    A gradient index metamaterial

    Full text link
    Metamaterials--artificially structured materials with tailored electromagnetic response--can be designed to have properties difficult to achieve with existing materials. Here we present a structured metamaterial, based on conducting split ring resonators (SRRs), which has an effective index-of-refraction with a constant spatial gradient. We experimentally confirm the gradient by measuring the deflection of a microwave beam by a planar slab of the composite metamaterial over a broad range of frequencies. The gradient index metamaterial represents an alternative approach to the development of gradient index lenses and similar optics that may be advantageous, especially at higher frequencies. In particular, the gradient index material we propose may be suited for terahertz applications, where the magnetic resonant response of SRRs has recently been demonstrated

    Cut-wire-pair structures as two-dimensional magnetic metamaterials

    Full text link
    We study numerically and experimentally magnetic metamaterials based on cut-wire pairs instead of split-ring resonators. The cut-wire pair planar structure is extended in order to create a truly two-dimensional metamaterial suitable for scaling to optical frequencies. We fabricate the cut-wire metamaterial operating at microwave frequencies with lattice spacing around 10% of the free-space wavelength, and find good agreement with direct numerical simulations. Unlike the structures based on split-ring resonators, the nearest-neighbor coupling in cut-wire pairs can result in a magnetic stop-band with propagation in the transverse direction

    Design and analytically full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations

    Full text link
    We investigate a general class of electromagnetic devices created with any continuous transformation functions by rigorously calculating the analytical expressions of the electromagnetic field in the whole space. Some interesting phenomena associated with these transformation devices, including the invisibility cloaks, concentrators, and field rotators, are discussed. By carefully choosing the transformation function, we can realize cloaks which are insensitive to perturbations at both the inner and outer boundaries. Furthermore, we find that when the coating layer of the concentrator is realized with left-handed materials, energy will circulate between the coating and the core, and the energy transmits through the core of the concentrator can be much bigger than that transmits through the concentrator. Therefore, such concentrator is also a power flux amplifier. Finally, we propose a spherical field rotator, which functions as not only a wave vector rotator, but also a polarization rotator, depending on the orientations of the spherical rotator with respect to the incident wave direction. The functionality of these novel transformation devices are all successfully confirmed by our analytical full wave method, which also provides an alternate computational efficient validation method in contrast to numerical validation methods.Comment: 22 pages, 3 figure

    Thin-film microsusceptometer with integrated nanoloop

    Get PDF
    Trabajo presentado al 14th International Superconductive Electronics Conference (ISEC), celebrado en Cambridge, Massachusetts (EE. UU.) del 7 al 11 de julio de 2013.-- et al.We report the design and performance of thin-film microsusceptometers intended for magnetic measurements on samples at variable temperature down to the low mK range and excitation frequencies of up to about 1 MHz. The devices are realized as first-order gradiometers with two circular loops of 60 μm or 30 μm average diameter resulting in a total inductance of 360 pH or 250 pH, respectively. An integrated excitation coil generates a magnetic field with a sensitivity of 0.1 T/A at the sample position, whereas the Josephson junctions are located in a field-reduced area. The susceptometers are fabricated by a conventional Nb/AlOx/Nb trilayer process. In order to enhance the sensitivity to the level required for the measurement of sub-μm samples, an extra detection loop of about 450 nm inner diameter was integrated into one of the pickup loops by using a focused ion beam (FIB). We show that this device is able of detecting signals from very small permalloy samples. An improved susceptometer design for equipment with integrated nanoloops is also presented, for which a total inductance of 50 pH is predicted.This work was partly funded by the European Microkelvin Collaboration within the 7th Framework Programme of the European Commission (Grant number 228464), by the Spanish Ministry of Economy and Competitiveness (Grant MAT2012-38318-C03), and by the EMRP (EMRP: European Metrology Research Programme) project MetNEMS NEW08. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.Peer reviewe

    Transformation Optics for Plasmonics

    Full text link
    A new strategy to control the flow of surface plasmon polaritons at metallic surfaces is presented. It is based on the application of the concept of Transformation Optics to devise the optical parameters of the dielectric medium placed on top of the metal surface. We describe the general methodology for the design of Transformation-Optical devices for surface plasmons and analyze, for proof-of-principle purposes, three representative examples with different functionalities: a beam shifter, a cylindrical cloak and a ground-plane cloak.Comment: 15 pages, 3 figure

    Ideal and nonideal electromagnetic cloaks

    Full text link
    We employ the analytical results for the spatial transformation of the electromagnetic fields to obtain and analyze explicit expressions for the structure of the electromagnetic fields in invisibility cloaks, beam splitters, and field concentrators. We study the efficiency of nonideal electromagnetic cloaks and discuss the effect of scattering losses on the cloak invisibility.Comment: 4 pages, 2 figure
    corecore