796 research outputs found
Transformation media that rotate electromagnetic fields
We suggest a way to manipulate electromagnetic wave by introducing a rotation
mapping of coordinates that can be realized by a specific transformation of
permittivity and permeability of a shell surrounding an enclosed domain. Inside
the enclosed domain, the information from outside will appear as if it comes
from a different angle. Numerical simulations were performed to illustrate
these properties.Comment: 5 pages, 3 figure
Design of Electromagnetic Cloaks and Concentrators Using Form-Invariant Coordinate Transformations of Maxwell's Equations
The technique of applying form-invariant, spatial coordinate transformations
of Maxwell's equations can facilitate the design of structures with unique
electromagnetic or optical functionality. Here, we illustrate the
transformation-optical approach in the designs of a square electromagnetic
cloak and an omni-directional electromagnetic field concentrator. The
transformation equations are described and the functionality of the devices is
numerically confirmed by two-dimensional finite element simulations. The two
devices presented demonstrate that the transformation optic approach leads to
the specification of complex, anisotropic and inhomogeneous materials with well
directed and distinct electromagnetic behavior.Comment: submitted to "Photonics and Nanostructures", Special Issue "PECS
VII", Elsevie
Full-wave simulations of electromagnetic cloaking structures
Based on a coordinate transformation approach, Pendry {\it et al.} have
reported electromagnetically anisotropic and inhomogeneous shells that, in
theory, completely shield an interior structure of arbitrary size from
electromagnetic fields without perturbing the external fields. We report
full-wave simulations of the cylindrical version of this cloaking structure
using ideal and nonideal (but physically realizable) electromagnetic parameters
in an effort to understand the challenges of realizing such a structure in
practice. The simulations indicate that the performance of the electromagnetic
cloaking structure is not especially sensitive to modest permittivity and
permeability variations. This is in contrast to other applications of
engineered electromagnetic materials, such as subwavelength focusing using
negative refractive index materials. The cloaking performance degrades smoothly
with increasing loss, and effective low-reflection shielding can be achieved
with a cylindrical shell composed of an eight (homogeneous) layer approximation
of the ideal continuous medium
A gradient index metamaterial
Metamaterials--artificially structured materials with tailored
electromagnetic response--can be designed to have properties difficult to
achieve with existing materials. Here we present a structured metamaterial,
based on conducting split ring resonators (SRRs), which has an effective
index-of-refraction with a constant spatial gradient. We experimentally confirm
the gradient by measuring the deflection of a microwave beam by a planar slab
of the composite metamaterial over a broad range of frequencies. The gradient
index metamaterial represents an alternative approach to the development of
gradient index lenses and similar optics that may be advantageous, especially
at higher frequencies. In particular, the gradient index material we propose
may be suited for terahertz applications, where the magnetic resonant response
of SRRs has recently been demonstrated
Cut-wire-pair structures as two-dimensional magnetic metamaterials
We study numerically and experimentally magnetic metamaterials based on
cut-wire pairs instead of split-ring resonators. The cut-wire pair planar
structure is extended in order to create a truly two-dimensional metamaterial
suitable for scaling to optical frequencies. We fabricate the cut-wire
metamaterial operating at microwave frequencies with lattice spacing around 10%
of the free-space wavelength, and find good agreement with direct numerical
simulations. Unlike the structures based on split-ring resonators, the
nearest-neighbor coupling in cut-wire pairs can result in a magnetic stop-band
with propagation in the transverse direction
Design and analytically full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations
We investigate a general class of electromagnetic devices created with any
continuous transformation functions by rigorously calculating the analytical
expressions of the electromagnetic field in the whole space. Some interesting
phenomena associated with these transformation devices, including the
invisibility cloaks, concentrators, and field rotators, are discussed. By
carefully choosing the transformation function, we can realize cloaks which are
insensitive to perturbations at both the inner and outer boundaries.
Furthermore, we find that when the coating layer of the concentrator is
realized with left-handed materials, energy will circulate between the coating
and the core, and the energy transmits through the core of the concentrator can
be much bigger than that transmits through the concentrator. Therefore, such
concentrator is also a power flux amplifier. Finally, we propose a spherical
field rotator, which functions as not only a wave vector rotator, but also a
polarization rotator, depending on the orientations of the spherical rotator
with respect to the incident wave direction. The functionality of these novel
transformation devices are all successfully confirmed by our analytical full
wave method, which also provides an alternate computational efficient
validation method in contrast to numerical validation methods.Comment: 22 pages, 3 figure
Thin-film microsusceptometer with integrated nanoloop
Trabajo presentado al 14th International Superconductive Electronics Conference (ISEC), celebrado en Cambridge, Massachusetts (EE. UU.) del 7 al 11 de julio de 2013.-- et al.We report the design and performance of thin-film microsusceptometers intended for magnetic measurements on samples at variable temperature down to the low mK range and excitation frequencies of up to about 1 MHz. The devices are realized as first-order gradiometers with two circular loops of 60 μm or 30 μm average diameter resulting in a total inductance of 360 pH or 250 pH, respectively. An integrated excitation coil generates a magnetic field with a sensitivity of 0.1 T/A at the sample position, whereas the Josephson junctions are located in a field-reduced area. The susceptometers are fabricated by a conventional Nb/AlOx/Nb trilayer process. In order to enhance the sensitivity to the level required for the measurement of sub-μm samples, an extra detection loop of about 450 nm inner diameter was integrated into one of the pickup loops by using a focused ion beam (FIB). We show that this device is able of detecting signals from very small permalloy samples. An improved susceptometer design for equipment with integrated nanoloops is also presented, for which a total inductance of 50 pH is predicted.This work was partly funded by the European Microkelvin Collaboration within the 7th Framework Programme of the European Commission (Grant number 228464), by the Spanish Ministry of Economy and Competitiveness (Grant MAT2012-38318-C03), and by the EMRP (EMRP: European Metrology Research Programme) project MetNEMS NEW08. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.Peer reviewe
Transformation Optics for Plasmonics
A new strategy to control the flow of surface plasmon polaritons at metallic
surfaces is presented. It is based on the application of the concept of
Transformation Optics to devise the optical parameters of the dielectric medium
placed on top of the metal surface. We describe the general methodology for the
design of Transformation-Optical devices for surface plasmons and analyze, for
proof-of-principle purposes, three representative examples with different
functionalities: a beam shifter, a cylindrical cloak and a ground-plane cloak.Comment: 15 pages, 3 figure
Ideal and nonideal electromagnetic cloaks
We employ the analytical results for the spatial transformation of the
electromagnetic fields to obtain and analyze explicit expressions for the
structure of the electromagnetic fields in invisibility cloaks, beam splitters,
and field concentrators. We study the efficiency of nonideal electromagnetic
cloaks and discuss the effect of scattering losses on the cloak invisibility.Comment: 4 pages, 2 figure
- …