96 research outputs found

    Complementary colors of colorons: the elementary excitations of the SU(3) Haldane--Shastry model

    Full text link
    We propose two possible trial wave functions for the elementary excitations of the SU(3) Haldane--Shastry model, but then argue on very general grounds that only one or the other can be a valid excitation. We then prove explicitly that the trial wave function describing a coloron excitation which transforms according to representation 3ˉ\bar{3} under SU(3) rotations if the spins of the original model transform according to representation 3, is exact. If a basis for the spins on the chain is spanned by the colors blue, red, and green, a basis for the coloron excitations is hence given by the complementary colors yellow, cyan, and magenta. We obtain the dispersion and the exclusion statistics among polarized colorons. Furthermore, we compare our results with the asymptotic Bethe Ansatz and discuss the generalization to SU(nn)

    Dynamical phase transitions after quenches in non-integrable models

    Full text link
    We investigate the dynamics following sudden quenches across quantum critical points belonging to different universality classes. Specifically, we use matrix product state methods to study the quantum Ising chain in the presence of two additional terms which break integrability. We find that in all models the rate function for the return probability to the initial state becomes a non-analytic function of time in the thermodynamic limit. This so-called `dynamical phase transition' was first observed in a recent work by Heyl, Polkovnikov, and Kehrein [Phys. Rev. Lett. 110, 135704 (2013)] for the exactly-solvable quantum Ising chain, which can be mapped to free fermions. Our results for `interacting theories' indicate that non-analytic dynamics is a generic feature of sudden quenches across quantum critical points. We discuss potential connections to the dynamics of the order parameter

    Efficiency and power of a thermoelectric quantum dot device

    Full text link
    We study linear response and nonequilibrium steady-state thermoelectric transport through a single-level quantum dot tunnel coupled to two reservoirs held at different temperatures as well as chemical potentials. A fermion occupying the dot interacts with those in the reservoirs by a short-ranged two-particle interaction. For parameters for which particles flow against a bias voltage from the hot to the cold reservoir this setup acts as an energy-conversion device with which electrical energy is gained out of waste heat. We investigate how correlations affect its efficiency and output power. In linear response the changes in the thermoelectric properties can be traced back to the interaction induced renormalization of the resonance line shape. In particular, small to intermediate repulsive interactions reduce the maximum efficiency. In nonequilibrium the situation is more complex and we identify a parameter regime in which for a fixed lower bound of the output power the efficiency increases.Comment: 6 pages, 6 figure

    Luttinger liquid universality in the time evolution after an interaction quench

    Full text link
    We provide strong evidence that the relaxation dynamics of one-dimensional, metallic Fermi systems resulting out of an abrupt amplitude change of the two-particle interaction has aspects which are universal in the Luttinger liquid sense: The leading long-time behavior of certain observables is described by universal functions of the equilibrium Luttinger liquid parameter and the renormalized velocity. We analytically derive those functions for the Tomonaga-Luttinger model and verify our hypothesis of universality by considering spinless lattice fermions within the framework of the density matrix renormalization group

    Spin and orbital fluctuations in non-equilibrium transport through quantum dots: A renormalisation-group analysis

    Full text link
    We study non-equilibrium current and occupation probabilities of a two-orbital quantum dot. The couplings to the leads are allowed to be asymmetric and orbital dependent as it is generically the case in transport experiments on molecules and nanowires. Starting from a two-orbital Anderson model, we perform a generalised Schrieffer-Wolff transformation to derive an effective Kondo model. This generates an orbital potential scattering contribution which is of the same order as the spin exchange interaction. In a first perturbative analysis we identify a regime of negative differential conductance and a cascade resonance in the presence of an external magnetic field, which both originate from the non-equilibrium occupation of the orbitals. We then study the logarithmic enhancement of these signatures by means of a renormalisation-group treatment. We find that the orbital potential scattering qualitatively changes the renormalisation of the spin exchange couplings and strongly affects the differential conductance for asymmetric couplings.Comment: 6 pages, 4 figures, revised version as publishe

    Magnetic field effects on the finite-frequency noise and ac conductance of a Kondo quantum dot out of equilibrium

    Full text link
    We present analytic results for the finite-frequency current noise and the nonequilibrium ac conductance for a Kondo quantum dot in presence of a magnetic field. Using the real-time renormalization group method, we determine the line shape close to resonances and show that while all resonances in the ac conductance are broadened by the transverse spin relaxation rate, the noise at finite field additionally involves the longitudinal rate as well as sharp kinks resulting in singular derivatives. Our results provide a consistent theoretical description of recent experimental data for the emission noise at zero magnetic field, and we propose the extension to finite field for which we present a detailed prediction.Comment: 21 pages, 13 figure

    Spin switching via quantum dot spin valves

    Get PDF
    We develop a theory for spin transport and magnetization dynamics in a quantum-dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets, and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems

    Exact results for SU(3) spin chains: trimer states, valence bond solids, and their parent Hamiltonians

    Full text link
    We introduce several exact models for SU(3) spin chains: (1) a translationally invariant parent Hamiltonian involving four-site interactions for the trimer chain, with a three-fold degenerate ground state. We provide numerical evidence that the elementary excitations of this model transform under representation 3bar of SU(3) if the original spins of the model transform under rep. 3. (2) a family of parent Hamiltonians for valence bond solids of SU(3) chains with spin reps. 6, 10, and 8 on each lattice site. We argue that of these three models, only the latter two exhibit spinon confinement and a Haldane gap in the excitation spectrum

    Influence of non-magnetic impurities on hole doped two-leg Cu-O Hubbard ladders

    Full text link
    We study the influence of non magnetic impurities on the phase diagram of doped two-leg Hubbard Cu-O ladders. In the absence of impurities this system posseses d-wave superconducting states and orbital current states depending on the doping. A single, strong, scatterer modifies its environment locally and this effect is assessed using a renormalization group analysis. At high doping, disorder causes intraband instabilities and at low doping it promotes interband instabilities. In the former case, we extend the boundary conformal field theory method, developed in the context of single chains, to handle the ladder problem, and we find exact closed-form analytical expressions for the correlation functions. This allows us to compute experimentally measurable local quantities such as the nuclear magnetic resonance line broadenings and scanning tunnelling microscope profiles. We also discuss the low doping regime where Kondo physics is at play, making qualitative predictions about its nature. Insight into collective effects is also given in the many weak impurities case, based on an RG approach. In this regime, one sees the interplay between interactions and disorder. We emphasize the influence of the O atoms on disorder effects both for the single- and for the many-defect situations.Comment: accepted to be published in NJP special editio

    On the determinant representations of Gaudin models' scalar products and form factors

    Full text link
    We propose alternative determinant representations of certain form factors and scalar products of states in rational Gaudin models realized in terms of compact spins. We use alternative pseudo-vacuums to write overlaps in terms of partition functions with domain wall boundary conditions. Contrarily to Slavnovs determinant formulas, this construction does not require that any of the involved states be solutions to the Bethe equations; a fact that could prove useful in certain non-equilibrium problems. Moreover, by using an atypical determinant representation of the partition functions, we propose expressions for the local spin raising and lowering operators form factors which only depend on the eigenvalues of the conserved charges. These eigenvalues define eigenstates via solutions of a system of quadratic equations instead of the usual Bethe equations. Consequently, the current work allows important simplifications to numerical procedures addressing decoherence in Gaudin models.Comment: 15 pages, 0 figures, Published versio
    • …
    corecore