81 research outputs found

    Blockade of Immunosuppressive Cytokines Restores NK Cell Antiviral Function in Chronic Hepatitis B Virus Infection

    Get PDF
    NK cells are enriched in the liver, constituting around a third of intrahepatic lymphocytes. We have previously demonstrated that they upregulate the death ligand TRAIL in patients with chronic hepatitis B virus infection (CHB), allowing them to kill hepatocytes bearing TRAIL receptors. In this study we investigated whether, in addition to their pathogenic role, NK cells have antiviral potential in CHB. We characterised NK cell subsets and effector function in 64 patients with CHB compared to 31 healthy controls. We found that, in contrast to their upregulated TRAIL expression and maintenance of cytolytic function, NK cells had a markedly impaired capacity to produce IFN-gamma in CHB. This functional dichotomy of NK cells could be recapitulated in vitro by exposure to the immunosuppressive cytokine IL-10, which was induced in patients with active CHB. IL-10 selectively suppressed NK cell IFN-gamma production without altering cytotoxicity or death ligand expression. Potent antiviral therapy reduced TRAIL-expressing CD56 bright NK cells, consistent with the reduction in liver inflammation it induced; however, it was not able to normalise IL-10 levels or the capacity of NK cells to produce the antiviral cytokine IFN-gamma. Blockade of IL-10 +/- TGF-beta restored the capacity of NK cells from both the periphery and liver of patients with CHB to produce IFN-gamma, thereby enhancing their non-cytolytic antiviral capacity. In conclusion, NK cells may be driven to a state of partial functional tolerance by the immunosuppressive cytokine environment in CHB. Their defective capacity to produce the antiviral cytokine IFN-gamma persists in patients on antiviral therapy but can be corrected in vitro by IL-10+/- TGF-beta blockade

    Intratumoral pan-ErbB targeted CAR-T for head and neck squamous cell carcinoma: interim analysis of the T4 immunotherapy study

    Get PDF
    Background: Locally advanced/recurrent head and neck squamous cell carcinoma (HNSCC) is associated with significant morbidity and mortality. To target upregulated ErbB dimer expression in this cancer, we developed an autologous CD28-based chimeric antigen receptor T-cell (CAR-T) approach named T4 immunotherapy. Patient-derived T-cells are engineered by retroviral transduction to coexpress a panErbB-specific CAR called T1E28ζ and an IL-4-responsive chimeric cytokine receptor, 4αβ, which allows IL-4-mediated enrichment of transduced cells during manufacture. These cells elicit preclinical antitumor activity against HNSCC and other carcinomas. In this trial, we used intratumoral delivery to mitigate significant clinical risk of on-target off-tumor toxicity owing to low-level ErbB expression in healthy tissues. // Methods: We undertook a phase 1 dose-escalation 3+3 trial of intratumoral T4 immunotherapy in HNSCC (NCT01818323). CAR T-cell batches were manufactured from 40 to 130 mL of whole blood using a 2-week semiclosed process. A single CAR T-cell treatment, formulated as a fresh product in 1–4 mL of medium, was injected into one or more target lesions. Dose of CAR T-cells was escalated in 5 cohorts from 1×107−1×109 T4+ T-cells, administered without prior lymphodepletion. // Results: Despite baseline lymphopenia in most enrolled subjects, the target cell dose was successfully manufactured in all cases, yielding up to 7.5 billion T-cells (67.5±11.8% transduced), without any batch failures. Treatment-related adverse events were all grade 2 or less, with no dose-limiting toxicities (Common Terminology Criteria for Adverse Events V.4.0). Frequent treatment-related adverse events were tumor swelling, pain, pyrexias, chills, and fatigue. There was no evidence of leakage of T4+ T-cells into the circulation following intratumoral delivery, and injection of radiolabeled cells demonstrated intratumoral persistence. Despite rapid progression at trial entry, stabilization of disease (Response Evaluation Criteria in Solid Tumors V.1.1) was observed in 9 of 15 subjects (60%) at 6 weeks post-CAR T-cell administration. Subsequent treatment with pembrolizumab and T-VEC oncolytic virus achieved a rapid complete clinical response in one subject, which was durable for over 3 years. Median overall survival was greater than for historical controls. Disease stabilization was associated with the administration of an immunophenotypically fitter, less exhausted, T4 CAR T-cell product. // Conclusions: These data demonstrate the safe intratumoral administration of T4 immunotherapy in advanced HNSCC

    Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection.

    Get PDF
    The S-type lectin galectin-9 binds to the negative regulatory molecule Tim-3 on T cells and induces their apoptotic deletion or functional inactivation. We investigated whether galectin-9/Tim-3 interactions contribute to the deletion and exhaustion of the antiviral T cell response in chronic hepatitis B virus infection (CHB). We found Tim-3 to be expressed on a higher percentage of CD4 and CD8 T cells from patients with CHB than healthy controls (p<0.0001) and to be enriched on activated T cells and those infiltrating the HBV-infected liver. Direct ex vivo examination of virus-specific CD8 T cells binding HLA-A2/peptide multimers revealed that Tim-3 was more highly upregulated on HBV-specific CD8 T cells than CMV-specific CD8 T cells or the global CD8 T cell population in patients with CHB (p<0.001) or than on HBV-specific CD8 after resolution of infection. T cells expressing Tim-3 had an impaired ability to produce IFN-γ and TNF-α upon recognition of HBV-peptides and were susceptible to galectin-9-triggered cell death in vitro. Galectin-9 was detectable at increased concentrations in the sera of patients with active CHB-related liver inflammation (p = 0.02) and was strongly expressed by Kupffer cells within the liver sinusoidal network. Tim-3 blockade resulted in enhanced expansion of HBV-specific CD8 T cells able to produce cytokines and mediate cytotoxicity in vitro. Blocking PD-1 in combination with Tim-3 enhanced the number of patients from whom functional antiviral responses could be recovered and/or the strength of responses, indicating that these co-inhibitory molecules play a non-redundant role in driving T cell exhaustion in CHB. Patients taking antivirals able to potently suppress HBV viraemia continued to express Tim-3 on their T cells and respond to Tim-3 blockade. In summary, both Tim-3 and galectin-9 are increased in CHB and may contribute to the inhibition and deletion of T cells as they infiltrate the HBV-infected liver

    The third signal cytokine IL-12 rescues the anti-viral function of exhausted HBV-specific CD8 T cells.

    Get PDF
    Optimal immune activation of naïve CD8 T cells requires signal 1 mediated by the T cell receptor, signal 2 mediated by co-stimulation and signal 3 provided by pro-inflammatory cytokines. However, the potential for signal 3 cytokines to rescue anti-viral responses in functionally exhausted T cells has not been defined. We investigated the effect of using third signal cytokines IL-12 or IFN-α to rescue the exhausted CD8 T cell response characteristic of patients persistently infected with hepatitis B virus (HBV). We found that IL-12, but not IFN-α, potently augmented the capacity of HBV-specific CD8 T cells to produce effector cytokines upon stimulation by cognate antigen. Functional recovery mediated by IL-12 was accompanied by down-modulation of the hallmark inhibitory receptor PD-1 and an increase in the transcription factor T-bet. PD-1 down-regulation was observed in HBV but not CMV-specific T cells, in line with our finding that the highly functional CMV response was not further enhanced by IL-12. IL-12 enhanced a number of characteristics of HBV-specific T cells important for viral control: cytotoxicity, polyfunctionality and multispecificity. Furthermore, IL-12 significantly decreased the pro-apoptotic molecule Bim, which is capable of mediating premature attrition of HBV-specific CD8 T cells. Combining IL-12 with blockade of the PD-1 pathway further increased CD8 functionality in the majority of patients. These data provide new insights into the distinct signalling requirements of exhausted T cells and the potential to recover responses optimised to control persistent viral infections

    The impact of currently licensed therapies on viral and immune responses in Chronic Hepatitis B: considerations for future novel therapeutics.

    Get PDF
    Despite the availability of a preventative vaccine, chronic hepatitis B (CHB) remains a global healthcare challenge with the risk of disease progression due to cirrhosis and hepatocellular carcinoma. Although current treatment strategies, interferon and nucleos(t)ide analogues have contributed to reducing morbidity and mortality related to CHB, these therapies are limited in providing functional cure. The treatment paradigm in CHB is rapidly evolving with a number of new agents in the developmental pipeline. However, until novel agents with functional cure capability are available in the clinical setting, there is a pressing need to optimize currently licensed therapies. Here, we discuss current agents used alone and/or in combination strategies along with the impact of these therapies on viral and immune responses. Novel treatment strategies are outlined, and the potential role of current therapies in the employment of pipeline agents is discussedWellcome Trust Clinical Research Training Fellowship (107389/Z/15/Z)NIHR Academic Clinical LectureshipBarts Charity Project Grants (723/1795 and MGU/0406NIHR Research for patient benefit award (PB‐PG‐0614‐34087) to PTF

    The role of IL-12/23 in T cell-related chronic inflammation:Implications of immunodeficiency and therapeutic blockade

    Get PDF
    In this review we discuss the divergent role of two closely related cytokines, IL-12 and IL-23, in shaping immune responses. In light of current therapeutic developments using biologic agents to block these two pathways, a better understanding of the immunological function of these cytokines is pivotal

    Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B.

    No full text
    Background & Aims: A better understanding of the immunomodulatory effects of PegIFNa therapy could allow more rational optimisation of future therapeutic approaches in chronic HBV infection. In this study, we evaluated dynamic changes in the innate and adaptive arms of the immune system induced by PegIFNa. Methods: PBMC were obtained from a cohort of patients with eAg-negative CHB before, during and after PegIFNa treatment. The number, phenotype and function of global and virus-specific T cells and NK cells were analyzed by flow cytometry and serum cytokines by ELISA or CBA. Results: The absolute number of CD8 T cells was strikingly reduced on PegIFNa therapy (p <0.001), with a predominant loss of end-stage effectors, including CMV-specific CD8 T cells. There was no significant recovery of the exhausted HBV-specific CD8 T cell response. By contrast, PegIFNa was able to potently and cumulatively drive the proliferation and expansion in absolute numbers of CD56bright NK cell numbers (p <0.001), with induction of the pro-proliferative cytokine IL-15. Expanded CD56bright NK cells showed enhanced expression of activation markers and the activating receptor NKp46, accompanied by augmentation of TRAIL and IFN-c expression (p <0.001). Peak virological response (temporal within individual patients and crosssectional within the cohort) correlated with the degree of expansion of functional CD56bright NK cells. Conclusions: IFN-a mediates divergent effects on the innate and adaptive arms of the immune system in vivo. The efficacy of Peg- IFNa may be limited by its depleting effect on CD8 T cells; conversely, it can cumulatively drive proliferation, activation and antiviral potential of CD56bright NK cells

    Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B

    No full text
    Background & Aims: A better understanding of the immunomodulatory effects of PegIFNa therapy could allow more rational optimisation of future therapeutic approaches in chronic HBV infection. In this study, we evaluated dynamic changes in the innate and adaptive arms of the immune system induced by PegIFNa. Methods: PBMC were obtained from a cohort of patients with eAg-negative CHB before, during and after PegIFNa treatment. The number, phenotype and function of global and virus-specific T cells and NK cells were analyzed by flow cytometry and serum cytokines by ELISA or CBA. Results: The absolute number of CD8 T cells was strikingly reduced on PegIFNa therapy (p <0.001), with a predominant loss of end-stage effectors, including CMV-specific CD8 T cells. There was no significant recovery of the exhausted HBV-specific CD8 T cell response. By contrast, PegIFNa was able to potently and cumulatively drive the proliferation and expansion in absolute numbers of CD56bright NK cell numbers (p <0.001), with induction of the pro-proliferative cytokine IL-15. Expanded CD56bright NK cells showed enhanced expression of activation markers and the activating receptor NKp46, accompanied by augmentation of TRAIL and IFN-c expression (p <0.001). Peak virological response (temporal within individual patients and crosssectional within the cohort) correlated with the degree of expansion of functional CD56bright NK cells. Conclusions: IFN-a mediates divergent effects on the innate and adaptive arms of the immune system in vivo. The efficacy of Peg- IFNa may be limited by its depleting effect on CD8 T cells; conversely, it can cumulatively drive proliferation, activation and antiviral potential of CD56bright NK cells

    Molecular analysis of aniridia patients for deletions involving the Wilms' tumor gene

    No full text
    A human aniridia candidate (AN) gene on chromosome 11p13 has been cloned and characterized. The AN gene is the second cloned gene of the contiguous genes syndrome WAGR (Wilms' tumor, aniridia, genitourinary malformations, mental retardation) on chromosome 11p13, WT1 being the first gene cloned. Knowledge about the position of the AN and WT1 genes on the map of 11p13 makes the risk assessment for Wilms' tumor development in AN patients possible. In this study, we analyzed familial and sporadic aniridia patients for deletions in 11p13 by cytogenetic analyses, in situ hybridization, and pulsed field gel electrophoresis (PFGE). Cytogenetically visible deletions were found in 3/11 sporadic AN cases and in one AN/WT patient, and submicroscopic deletions were identified in two sporadic AN/WT patients and in 1/9 AN families. The exact extent of the deletions was determined with PFGE and, as a result, we could delineate the risk for Wilms' tumor development. Future analyses of specific deletion endpoints in individual AN cases with the 11p13 deletion should result in a more precise risk assessment for these patient
    corecore