794 research outputs found

    Absence of signatures of Weyl orbits in the thickness dependence of quantum transport in cadmium arsenide

    Full text link
    In a Weyl orbit, the Fermi arc surface states on opposite surfaces of the topological semimetal are connected through the bulk Weyl or Dirac nodes. Having a real-space component, these orbits accumulate a sample-size-dependent phase. Following recent work on the three-dimensional Dirac semimetal cadmium arsenide (Cd3As2), we have sought evidence for this thickness-dependent effect in quantum oscillations and quantum Hall plateaus in (112)-oriented Cd3As2 thin films grown by molecular beam epitaxy. We compare quantum transport in films of varying thickness at apparently identical gate-tuned carrier concentrations and find no clear dependence of the relative phase of the quantum oscillations on the sample thickness. We show that small variations in carrier densities, difficult to detect in low-field Hall measurements, lead to shifts in quantum oscillations that are commensurate with previously reported phase shifts. Future claims of Weyl orbits based on the thickness dependence of quantum transport data require additional studies that demonstrate that these competing effects have been disentangled

    Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2

    Full text link
    The magnetotransport properties of epitaxial films of Cd3As2, a paradigm three-dimensional Dirac semimetal, are investigated. We show that an energy gap opens in the bulk electronic states of sufficiently thin films and, at low temperatures, carriers residing in surface states dominate the electrical transport. The carriers in these states are sufficiently mobile to give rise to a quantized Hall effect. The sharp quantization demonstrates surface transport that is virtually free of parasitic bulk conduction and paves the way for novel quantum transport studies in this class of topological materials. Our results also demonstrate that heterostructuring approaches can be used to study and engineer quantum states in topological semimetals.Comment: Accepted, Phys. Rev. Let

    Basal-plane growth of cadmium arsenide by molecular beam epitaxy

    Full text link
    (001)-oriented thin films of the three-dimensional Dirac semimetal cadmium arsenide can realize a quantum spin Hall insulator and other kinds of topological physics, all within the flexible architecture of epitaxial heterostructures. Here, we report a method for growing (001) cadmium arsenide films using molecular beam epitaxy. The introduction of a thin indium arsenide wetting layer improves surface morphology and structural characteristics, as measured by x-ray diffraction and reflectivity, atomic force microscopy, and scanning transmission electron microscopy. The electron mobility of 50-nm-thick films is found to be 9300 cm2/Vs at 2 K, comparable to the highest-quality films grown in the conventional (112) orientation. This work demonstrates a simple experimental framework for exploring topological phases that are predicted to exist in proximity to the three-dimensional Dirac semimetal phase

    Identification of novel pathogen-derived agonists for human and mouse formyl peptide receptors

    Get PDF

    Possible signatures of mixed-parity superconductivity in doped polar SrTiO3 films

    Get PDF
    Superconductors that possess both broken spatial inversion symmetry and spin-orbit interactions exhibit a mix of spin singlet and triplet pairing. Here, we report on measurements of the superconducting properties of electron-doped, strained SrTiO3 films. These films have an enhanced superconducting transition temperature and were previously shown to undergo a transition to a polar phase prior to becoming superconducting. We show that some films show signatures of an unusual superconducting state, such as an in-plane critical field that is higher than both the paramagnetic and orbital pair breaking limits. Moreover, nonreciprocal transport, which reflects the ratio of odd versus even pairing interactions, is observed. Together, these characteristics indicate that these films provide a tunable platform for investigations of unconventional superconductivity

    Point group symmetry of cadmium arsenide thin films determined by convergent beam electron diffraction

    Get PDF
    Cadmium arsenide (Cd3As2) is one of the first materials to be discovered to belong to the class of three-dimensional topological semimetals. Reported room temperature crystal structures of Cd3As2 reported differ subtly in the way the Cd vacancies are arranged within its antifluorite-derived structure, which determines if an inversion center is present and if Cd3As2 is a Dirac or Weyl semimetal. Here, we apply convergent beam electron diffraction (CBED) to determine the point group of Cd3As2 thin films grown by molecular beam epitaxy. Using CBED patterns from multiple zone axes, high-angle annular dark-field images acquired in scanning transmission electron microscopy, and Bloch wave simulations, we show that Cd3As2 belongs to the tetragonal 4/mmm point group, which is centrosymmetric. The results show that CBED can distinguish very subtle differences in the crystal structure of a topological semimetal, a capability that will be useful for designing materials and thin film heterostructures with topological states that depend on the presence of certain crystal symmetries.Comment: Accepted for publication in Physical Review Material

    Negative magnetoresistance due to conductivity fluctuations in films of the topological semimetal Cd3As2

    Full text link
    Recently discovered Dirac and Weyl semimetals display unusual magnetoresistance phenomena, including a large, non-saturating, linear transverse magnetoresistance and a negative longitudinal magnetoresistance. The latter is often considered as evidence of fermions having a defined chirality. Classical mechanisms, due to disorder or non-uniform current injection, can however, also produce negative longitudinal magnetoresistance. Here, we report on magnetotransport measurements performed on epitaxial thin films of Cd3As2, a three-dimensional Dirac semimetal. Quasi-linear positive transverse magnetoresistance and negative longitudinal magnetoresistance are observed. By evaluating films of different thickness and by correlating the temperature dependence of the carrier density and mobility with the magnetoresistance characteristics, we demonstrate that both the quasi-linear positive and the negative magnetoresistance are caused by conductivity fluctuations. Chiral anomaly is not needed to explain the observed features.Comment: Accepted for publication as Rapid Communication in Physical Review
    corecore