13,543 research outputs found
On statistically stationary homogeneous shear turbulence
A statistically stationary turbulence with a mean shear gradient is realized
in a flow driven by suitable body forces. The flow domain is periodic in
downstream and spanwise directions and bounded by stress free surfaces in the
normal direction. Except for small layers near the surfaces the flow is
homogeneous. The fluctuations in turbulent energy are less violent than in the
simulations using remeshing, but the anisotropy on small scales as measured by
the skewness of derivatives is similar and decays weakly with increasing
Reynolds number.Comment: 4 pages, 5 figures (Figs. 3 and 4 as external JPG-Files
Sub-Kolmogorov-Scale Fluctuations in Fluid Turbulence
We relate the intermittent fluctuations of velocity gradients in turbulence
to a whole range of local dissipation scales generalizing the picture of a
single mean dissipation length. The statistical distribution of these local
dissipation scales as a function of Reynolds number is determined in numerical
simulations of forced homogeneous isotropic turbulence with a spectral
resolution never applied before which exceeds the standard one by at least a
factor of eight. The core of the scale distribution agrees well with a
theoretical prediction. Increasing Reynolds number causes the generation of
ever finer local dissipation scales. This is in line with a less steep decay of
the large-wavenumber energy spectra in the dissipation range. The energy
spectrum for the highest accessible Taylor microscale Reynolds number
R_lambda=107 does not show a bottleneck.Comment: 8 pages, 5 figures (Figs. 1 and 3 in reduced quality
Moving to Extremal Graph Parameters
Which graphs, in the class of all graphs with given numbers n and m of edges
and vertices respectively, minimizes or maximizes the value of some graph
parameter? In this paper we develop a technique which provides answers for
several different parameters: the numbers of edges in the line graph, acyclic
orientations, cliques, and forests. (We minimize the first two and maximize the
third and fourth.)
Our technique involves two moves on the class of graphs. A compression move
converts any graph to a form we call fully compressed: the fully compressed
graphs are split graphs in which the neighbourhoods of points in the
independent set are nested. A second consolidation move takes each fully
compressed graph to one particular graph which we call H(n,m). We show
monotonicity of the parameters listed for these moves in many cases, which
enables us to obtain our results fairly simply.
The paper concludes with some open problems and future directions
Dispersion of tracer particles in a compressible flow
The turbulent diffusion of Lagrangian tracer particles has been studied in a
flow on the surface of a large tank of water and in computer simulations. The
effect of flow compressibility is captured in images of particle fields. The
velocity field of floating particles has a divergence, whose probability
density function shows exponential tails. Also studied is the motion of pairs
and triplets of particles. The mean square separation is fitted to
the scaling form ~ t^alpha, and in contrast with the
Richardson-Kolmogorov prediction, an extended range with a reduced scaling
exponent of alpha=1.65 pm 0.1 is found. Clustering is also manifest in strongly
deformed triangles spanned within triplets of tracers.Comment: 6 pages, 4 figure
Alternative Buffer-Layers for the Growth of SrBi2Ta2O9 on Silicon
In this work we investigate the influence of the use of YSZ and CeO2/YSZ as
insulators for Metal- Ferroelectric-Insulator-Semiconductor (MFIS) structures
made with SrBi2Ta2O9 (SBT). We show that by using YSZ only the a-axis oriented
Pyrochlore phase could be obtained. On the other hand the use of a CeO2/YSZ
double-buffer layer gave a c-axis oriented SBT with no amorphous SiO2 inter-
diffusion layer. The characteristics of MFIS diodes were greatly improved by
the use of the double buffer. Using the same deposition conditions the memory
window could be increased from 0.3 V to 0.9 V. From the piezoelectric response,
nano-meter scale ferroelectric domains could be clearly identified in SBT thin
films.Comment: 5 pages, 9 figures, 13 refernece
Money and Goldstone modes
Why is ``worthless'' fiat money generally accepted as payment for goods and
services? In equilibrium theory, the value of money is generally not
determined: the number of equations is one less than the number of unknowns, so
only relative prices are determined. In the language of mathematics, the
equations are ``homogeneous of order one''. Using the language of physics, this
represents a continuous ``Goldstone'' symmetry. However, the continuous
symmetry is often broken by the dynamics of the system, thus fixing the value
of the otherwise undetermined variable. In economics, the value of money is a
strategic variable which each agent must determine at each transaction by
estimating the effect of future interactions with other agents. This idea is
illustrated by a simple network model of monopolistic vendors and buyers, with
bounded rationality. We submit that dynamical, spontaneous symmetry breaking is
the fundamental principle for fixing the value of money. Perhaps the continuous
symmetry representing the lack of restoring force is also the fundamental
reason for large fluctuations in stock markets.Comment: 7 pages, 3 figure
Measurement of heavy-hole spin dephasing in (InGa)As quantum dots
We measure the spin dephasing of holes localized in self-assembled (InGa)As
quantum dots by spin noise spectroscopy. The localized holes show a distinct
hyperfine interaction with the nuclear spin bath despite the p-type symmetry of
the valence band states. The experiments reveal a short spin relaxation time
{\tau}_{fast}^{hh} of 27 ns and a second, long spin relaxation time
{\tau}_{slow}^{hh} which exceeds the latter by more than one order of
magnitude. The two times are attributed to heavy hole spins aligned
perpendicular and parallel to the stochastic nuclear magnetic field. Intensity
dependent measurements and numerical simulations reveal that the long
relaxation time is still obscured by light absorption, despite low laser
intensity and large detuning. Off-resonant light absorption causes a
suppression of the spin noise signal due to the creation of a second hole
entailing a vanishing hole spin polarization.Comment: accepted to be published in AP
Derivative moments in turbulent shear flows
We propose a generalized perspective on the behavior of high-order derivative
moments in turbulent shear flows by taking account of the roles of small-scale
intermittency and mean shear, in addition to the Reynolds number. Two
asymptotic regimes are discussed with respect to shear effects. By these means,
some existing disagreements on the Reynolds number dependence of derivative
moments can be explained. That odd-order moments of transverse velocity
derivatives tend not vanish as expected from elementary scaling considerations
does not necessarily imply that small-scale anisotropy persists at all Reynolds
numbers.Comment: 11 pages, 7 Postscript figure
Tunable sub-luminal propagation of narrowband x-ray pulses
Group velocity control is demonstrated for x-ray photons of 14.4 keV energy
via a direct measurement of the temporal delay imposed on spectrally narrow
x-ray pulses. Sub-luminal light propagation is achieved by inducing a steep
positive linear dispersion in the optical response of Fe M\"ossbauer
nuclei embedded in a thin film planar x-ray cavity. The direct detection of the
temporal pulse delay is enabled by generating frequency-tunable spectrally
narrow x-ray pulses from broadband pulsed synchrotron radiation. Our
theoretical model is in good agreement with the experimental data.Comment: 8 pages, 4 figure
- …