1,228 research outputs found
Damage Tracking in Laboratory Reinforced Concrete Bridge Columns Under Reverse-cyclic Loading Using Fusion-based Imaging
Fusion-based imaging using ground-penetrating radar (GPR) and ultrasonic echo array (UEA) was employed to track damage progression in the columns of two full-scale reinforced concrete (RC) bridge column-footing subassembly laboratory specimens. The specimens had different lap-splice detailing and were subjected to reverse-cyclic lateral loading simulating a subduction zone earthquake. GPR and UEA scans were performed on the east and west faces of the columns at select ductility levels. Reconstructed images were obtained using the extended total focusing method (XTFM) and fused using a wavelet-based technique. Composite images of each column\u27s interior were created by merging the images from both sides. A quantitative analysis based on the structural similarity (SSIM) index accurately captured damage progression. A backwall analysis using the amplitude of the backwall reflector was also performed. Changes as early as in the first measurement (μ = 0.5 displacement ductility level) could be detected. Damage variation along the column height was observed, consistent with greater damage at the base. The proposed analyses distinguished the structural behavior differences between the two specimens. In summary, the SSIM metric provides a valuable tool for detecting changes, while the backwall analysis offers simple yet informative insights into damage progression and distribution in full-scale RC members
Remote State Preparation
Quantum teleportation uses prior entanglement and forward classical
communication to transmit one instance of an unknown quantum state. Remote
state preparation (RSP) has the same goal, but the sender knows classically
what state is to be transmitted. We show that the asymptotic classical
communication cost of RSP is one bit per qubit - half that of teleportation -
and becomes even less when transmitting part of a known entangled state. We
explore the tradeoff between entanglement and classical communication required
for RSP, and discuss RSP capacities of general quantum channels.Comment: 4 pages including 1 epsf figure; v3 has an additional author and
discusses relation to work of Devetak and Berger (quant-ph/0102123); v4
improves low-entanglement protocols without back communication to perform as
well as low-entanglement protocols with back communication; v5 (journal
version) has a few small change
Grapevine germplasm collections of Switzerland
Special Issu
Broadband channel capacities
We study the communication capacities of bosonic broadband channels in the
presence of different sources of noise. In particular we analyze lossy channels
in presence of white noise and thermal bath. In this context, we provide a
numerical solution for the entanglement assisted capacity and upper and lower
bounds for the classical and quantum capacities.Comment: 11 pages, 7 figures, 3 table
Properties of Classical and Quantum Jensen-Shannon Divergence
Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the
most important divergence measure of information theory, Kullback divergence.
As opposed to Kullback divergence it determines in a very direct way a metric;
indeed, it is the square of a metric. We consider a family of divergence
measures (JD_alpha for alpha>0), the Jensen divergences of order alpha, which
generalize JD as JD_1=JD. Using a result of Schoenberg, we prove that JD_alpha
is the square of a metric for alpha lies in the interval (0,2], and that the
resulting metric space of probability distributions can be isometrically
embedded in a real Hilbert space. Quantum Jensen-Shannon divergence (QJD) is a
symmetrized and smoothed version of quantum relative entropy and can be
extended to a family of quantum Jensen divergences of order alpha (QJD_alpha).
We strengthen results by Lamberti et al. by proving that for qubits and pure
states, QJD_alpha^1/2 is a metric space which can be isometrically embedded in
a real Hilbert space when alpha lies in the interval (0,2]. In analogy with
Burbea and Rao's generalization of JD, we also define general QJD by
associating a Jensen-type quantity to any weighted family of states.
Appropriate interpretations of quantities introduced are discussed and bounds
are derived in terms of the total variation and trace distance.Comment: 13 pages, LaTeX, expanded contents, added references and corrected
typo
Quantum Channel Capacity of Very Noisy Channels
We present a family of additive quantum error-correcting codes whose
capacities exceeds that of quantum random coding (hashing) for very noisy
channels. These codes provide non-zero capacity in a depolarizing channel for
fidelity parameters when . Random coding has non-zero capacity
only for ; by analogy to the classical Shannon coding limit, this
value had previously been conjectured to be a lower bound. We use the method
introduced by Shor and Smolin of concatenating a non-random (cat) code within a
random code to obtain good codes. The cat code with block size five is shown to
be optimal for single concatenation. The best known multiple-concatenated code
we found has a block size of 25. We derive a general relation between the
capacity attainable by these concatenation schemes and the coherent information
of the inner code states.Comment: 31 pages including epsf postscript figures. Replaced to correct
important typographical errors in equations 36, 37 and in tex
Quantum Nonlocality without Entanglement
We exhibit an orthogonal set of product states of two three-state particles
that nevertheless cannot be reliably distinguished by a pair of separated
observers ignorant of which of the states has been presented to them, even if
the observers are allowed any sequence of local operations and classical
communication between the separate observers. It is proved that there is a
finite gap between the mutual information obtainable by a joint measurement on
these states and a measurement in which only local actions are permitted. This
result implies the existence of separable superoperators that cannot be
implemented locally. A set of states are found involving three two-state
particles which also appear to be nonmeasurable locally. These and other
multipartite states are classified according to the entropy and entanglement
costs of preparing and measuring them by local operations.Comment: 27 pages, Latex, 6 ps figures. To be submitted to Phys. Rev. A.
Version 2: 30 pages, many small revisions and extensions, author added.
Version 3: Proof in Appendix D corrected, many small changes; final version
for Phys. Rev. A Version 4: Report of Popescu conjecture modifie
Recommended from our members
Dysfunctional brain dynamics and their origin in Lewy body dementia.
Lewy body dementia includes dementia with Lewy bodies and Parkinson's disease dementia and is characterized by transient clinical symptoms such as fluctuating cognition, which might be driven by dysfunction of the intrinsic dynamic properties of the brain. In this context we investigated whole-brain dynamics on a subsecond timescale in 42 Lewy body dementia compared to 27 Alzheimer's disease patients and 18 healthy controls using an EEG microstate analysis in a cross-sectional design. Microstates are transiently stable brain topographies whose temporal characteristics provide insight into the brain's dynamic repertoire. Our additional aim was to explore what processes in the brain drive microstate dynamics. We therefore studied associations between microstate dynamics and temporal aspects of large-scale cortical-basal ganglia-thalamic interactions using dynamic functional MRI measures given the putative role of these subcortical areas in modulating widespread cortical function and their known vulnerability to Lewy body pathology. Microstate duration was increased in Lewy body dementia for all microstate classes compared to Alzheimer's disease (P < 0.001) and healthy controls (P < 0.001), while microstate dynamics in Alzheimer's disease were largely comparable to healthy control levels, albeit with altered microstate topographies. Correspondingly, the number of distinct microstates per second was reduced in Lewy body dementia compared to healthy controls (P < 0.001) and Alzheimer's disease (P < 0.001). In the dementia with Lewy bodies group, mean microstate duration was related to the severity of cognitive fluctuations (ρ = 0.56, PFDR = 0.038). Additionally, mean microstate duration was negatively correlated with dynamic functional connectivity between the basal ganglia (r = - 0.53, P = 0.003) and thalamic networks (r = - 0.38, P = 0.04) and large-scale cortical networks such as visual and motor networks in Lewy body dementia. The results indicate a slowing of microstate dynamics and disturbances to the precise timing of microstate sequences in Lewy body dementia, which might lead to a breakdown of the intricate dynamic properties of the brain, thereby causing loss of flexibility and adaptability that is crucial for healthy brain functioning. When contrasted with the largely intact microstate dynamics in Alzheimer's disease, the alterations in dynamic properties in Lewy body dementia indicate a brain state that is less responsive to environmental demands and might give rise to the apparent slowing in thinking and intermittent confusion which typify Lewy body dementia. By using Lewy body dementia as a probe pathology we demonstrate a potential link between dynamic functional MRI fluctuations and microstate dynamics, suggesting that dynamic interactions within the cortical-basal ganglia-thalamic loop might play a role in the modulation of EEG dynamics
- …