13 research outputs found

    Methoden zur lasergestĂŒtzten AbschĂ€tzung extensiver GrĂŒnlandbestĂ€nde

    Get PDF
    In der Forstwirtschaft ist die lasergestĂŒtzte HolzertragsabschĂ€tzung bereits eine etablierte Technik. In Graslandökosystemen hingegen fand diese Technik bisher weniger Aufmerksamkeit. Deshalb ist die AbschĂ€tzung extensiver GrĂŒnlandbestĂ€nde mittels eines terrestrischen Laserscanners (TLS) noch wenig erforscht. Der Einsatz fernerkundlicher Methoden zur Erfassung qualitativer und quantitativer Parameter von extensiven GrĂŒnlandbestĂ€nden kann Managementstrategien zum Erhalt schĂŒtzenswerter Ökosysteme unterstĂŒtzen. Die VersuchsflĂ€chen befanden sich im „UNESCO BiosphĂ€renreservat Rhön“ und wurden zu drei Terminen im Jahr mittels eines terrestrischen Laserscanners (Leica P30) gemessen. Vier Methoden zur Biomassebestimmung aus dreidimensionalen Punktwolken wurden auf die DatensĂ€tze angewendet: Die Methode der Vegetationshöhe, der Summe der Voxel, der mittleren 3d-Raster Höhe und das Volumen der konvexen HĂŒlle. Die Methoden wurden teilweise modifiziert in Bezug auf einzelne funktionale Parameter, um die ModellstabilitĂ€t und ModellstĂ€rke zu optimieren. Die Methoden wurden verglichen hinsichtlich ihrer ModellstĂ€rke, der Kalkulationsdauer und hinsichtlich der Anzahl an Scans, die in jede Punktwolke einfließen. Die Methoden wurden erfolgreich angewendet und die jeweils optimalen Parametereinstellungen wurden identifiziert. Die beste ModellstĂ€rke lieferte die Methode der Vegetationshöhe gemittelt aus den oberen 5 % aller Vegetationshöhenwerte (angepasstes RÂČ 0,72). Die Korrelationen der Modelle mit dem gemessenen Frischmasseertrag fielen durchweg besser aus im Vergleich zum Trockenmasseertrag. Modelle der Vegetationshöhe, beruhend auf Punktwolken aus zwei Scans, erzielten die höchste SchĂ€tzgenauigkeit fĂŒr Frisch- und Trockenmasseertrag (angepasstes RÂČ 0,73 und 0,58)

    Biomasseertrag, Lupinenanteil und Alkaloidgehalte in BergmÀhwiesen in AbhÀngigkeit des Erntezeitpunktes

    Get PDF
    Die invasive Leguminose Lupinus polyphyllus (VielblĂ€ttrige Lupine) breitet sich in artenreichen Borstgrasrasen und BergmĂ€hwiesen aus. Dort verdrĂ€ngt sie gefĂ€hrdete Rote-Liste Arten und verĂ€ndert die Artenzusammensetzung. Wir fĂŒhrten ein Experiment durch um den Biomasseertrag und den Lupinenanteil an der Biomasse zu unterschiedlichen Nutzungszeitpunkten zu untersuchen. ZusĂ€tzlich wurde der Alkaloidgehalt der Lupinen ermittelt, da dieser einen Einsatz der Biomasse in der TierernĂ€hrung verhindern kann. Die Ergebnisse zeigten BioamsseertrĂ€ge vo 3,6 bis 3,9 t Trockenmasse pro Hektar und Lupinenanteile von ca. 30% im Mittel. Der Alkaloidgehalt in den Lupinen wies eine Spannweite zwischen 0,7 und 2,5% in der Trockenmasse auf und war signifikant abhĂ€ngig vom untersuchten Pflanzenorgan. Die Samen und BlĂ€tter hatten signifikant höhere Alkaloidgehalte als die StĂ€ngel und BlĂŒten

    Drohnenbasierte SchÀtzung der rÀumlichen VariabilitÀt von Luzerne-Ertragsanteilen in Luzerne-Gras-Gemengen

    Get PDF
    Mithilfe drohnebasierter multispektraler Aufnahmen wurde die rÀumliche VariabilitÀt des Luzerneanteils in Luzerne-Gras-Gemenge auf zwei SchlÀgen in Hessen, Deutschland, mit hoher Genauigkeit geschÀtzt. Daraus erstellte Karten ermöglichen die rÀumliche Analyse der BestÀnde hinsichtlich N-Fixierungpotenzial

    Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non‐forest ecosystems

    Get PDF
    P. 1-15Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1–10 ha−1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe.S

    Potentials and Limitations of WorldView-3 Data for the Detection of Invasive Lupinus polyphyllus Lindl. in Semi-Natural Grasslands

    No full text
    Semi-natural grasslands contribute highly to biodiversity and other ecosystem services, but they are at risk by the spread of invasive plant species, which alter their habitat structure. Large area grassland monitoring can be a powerful tool to manage invaded ecosystems. Therefore, WorldView-3 multispectral sensor data was utilized to train multiple machine learning algorithms in an automatic machine learning workflow called ‘H2O AutoML’ to detect L. polyphyllus in a nature protection grassland ecosystem. Different degree of L. polyphyllus cover was collected on 3 × 3 m2 reference plots, and multispectral bands, indices, and texture features were used in a feature selection process to identify the most promising classification model and machine learning algorithm based on mean per class error, log loss, and AUC metrics. The best performance was achieved with a binary classification of lupin-free vs. fully invaded 3 × 3 m2 plot classification with a set of 7 features out of 763. The findings reveal that L. polyphyllus detection from WorldView-3 sensor data is limited to large dominant spots and not recommendable for lower plant coverage, especially single plant detection. Further research is needed to clarify if different phenological stages of L. polyphyllus as well as time series increase classification performance

    Multisite and Multitemporal Grassland Yield Estimation Using UAV-Borne Hyperspectral Data

    No full text
    Grassland ecosystems can be hotspots of biodiversity and act as carbon sinks while at the same time providing the basis of forage production for ruminants in dairy and meat production. Annual grassland dry matter yield (DMY) is one of the most important agronomic parameters reflecting differences in usage intensity such as number of harvests and fertilization. Current methods for grassland DMY estimation are labor-intensive and prone to error due to small sample size. With the advent of unmanned aerial vehicles (UAVs) and miniaturized hyperspectral sensors, a novel tool for remote sensing of grassland with high spatial, temporal and radiometric resolution and coverage is available. The present study aimed at developing a robust model capable of estimating grassland biomass across a gradient of usage intensity throughout one growing season. Therefore, UAV-borne hyperspectral data from eight grassland sites in North Hesse, Germany, originating from different harvests, were utilized for the modeling of fresh matter yield (FMY) and DMY. Four machine learning (ML) algorithms were compared for their modeling performance. Among them, the rule-based ML method Cubist regression (CBR) performed best, delivering high prediction accuracies for both FMY (nRMSEp 7.6%, Rp2 0.87) and DMY (nRMSEp 12.9%, Rp2 0.75). The model showed a high robustness across sites and harvest dates. The best models were employed to produce maps for FMY and DMY, enabling the detailed analysis of spatial patterns. Although the complexity of the approach still restricts its practical application in agricultural management, the current study proved that biomass of grassland sites being subject to different management intensities can be modeled from UAV-borne hyperspectral data at high spatial resolution with high prediction accuracies
    corecore