559 research outputs found
Experimental Study and Numerical Simulation of Sediment Transport in a Shallow Reservoir
The prediction of sedimentation is an important aspect of reservoir planning and design. Such prediction can be
supported by detailed analyses of flow patterns and sediment transport inside reservoirs, usually conducted through
numerical simulation. This research compares laboratorial sedimentation experiments in a shallow reservoir and
predictions using a 2D numerical model with depth-average Navier-Stokes equations and a sediment transport code.
A number of sediment transport equations were tested, among which the Engelund and Fredsøe formulation better
represented the measured data. Flows without sediment transport or without bed dunes could be simulated using
Smagorinski’s turbulence model, while flows with sediment occurring over dunes needed the use of a constant
turbulent viscosity. The similarity obtained between experimental data and numerical results, for both flow pattern
and sediment deposition, confirms that the models and numerical codes used in this work are useful for the analysis
and prediction of reservoir sedimentation
IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria : guidelines of the EU-CARDIOPROTECTION COST Action
Full list of the EU-CARDIOPROTECTION COST Action CA16225 Working group members is provided at the end of the article in Acknowledgements section. Funding Information: This article is based on the work from COST Action EU-CARDIOPROTECTION CA16225 supported by COST (European Cooperation in Science and Technology). DJH is supported by the Duke-National University Singapore Medical School, Singapore Ministry of Health’s National Medical Research Council under its Clinician Scientist-Senior Investigator scheme (NMRC/CSA-SI/0011/2017) and Collaborative Centre Grant scheme (NMRC/CGAug16C006). SL is supported by grants from the South African Department of Science and Technology and the South African National Research Foundation. SMD is supported by grants from the British Heart Foundation (PG/19/51/34493 and PG/16/85/32471). GH is supported by the German Research Foundation (SFB 1116 B8). MRM is supported by the Spanish Institute of Health Carlos III (FIS PI19/01196 and CIBER-CV). RS is supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [Project number 268555672—SFB 1213, Project B05]. PF is supported by the National Research, Development and Innovation Office of Hungary (Research Excellence Program—TKP, National Heart Program NVKP 16-1-2016-0017) and by the Higher Education Institutional Excellence Program of the Ministry of Human Capacities in Hungary, within the framework of the Therapeutic Development thematic program of the Semmelweis University. Funding Information: The IMPACT criteria were presented for approval to the Management Committee of the EU-CARDIOPROTECTION COST Action CA16225: Pavle Adamovski, Ioanna Andreadou, Saime Batirel, Monika Bartekov?, Luc Bertrand, Christophe Beauloye, David Biedermann, Vilmante Borutaite, Hans Erik Botker, Stefan Chlopicki, Maija Dambrova, Sean Davidson, Yvan Devaux, Fabio Di Lisa, Dragan Djuric, David Erlinge, Ines Falcao-Pires, P?ter Ferdinandy, Eleftheria Galatou, Alfonso Garcia-Sosa, Henrique Girao, Zoltan Giricz, Mariann Gyongyosi, Derek J Hausenloy, Donagh Healy, Gerd Heusch, Vladimir Jakovljevic, Jelena Jovanic, George Kararigas, Risto Kerkal, Frantisek Kolar, Brenda Kwak, Przemys?aw Leszek, Edgars Liepinsh , Jacob Lonborg, Sarah Longnus, Jasna Marinovic, Danina Mirela Muntean, Lana Nezic, Michel Ovize, Pasquale Pagliaro, Clarissa Pedrosa Da Costa Gomes, John Pernow, Andreas Persidis, S?ren Erik Pischke, Bruno Podesser, Ines Poto?njak, Fabrice Prunier, Tanya Ravingerova, Marisol Ruiz-Meana, Alina Serban, Katrine Slagsvold, Rainer Schulz, Niels van Royen, Belma Turan, Marko Vendelin, Stewart Walsh, Nace Zidar, Coert Zuurbier, Derek Yellon. Publisher Copyright: © 2021, The Author(s).Acute myocardial infarction (AMI) and the heart failure (HF) which may follow are among the leading causes of death and disability worldwide. As such, new therapeutic interventions are still needed to protect the heart against acute ischemia/reperfusion injury to reduce myocardial infarct size and prevent the onset of HF in patients presenting with AMI. However, the clinical translation of cardioprotective interventions that have proven to be beneficial in preclinical animal studies, has been challenging. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic in vivo preclinical assessment of the efficacy of promising cardioprotective interventions prior to their clinical evaluation. To address this, we propose an in vivo set of step-by-step criteria for IMproving Preclinical Assessment of Cardioprotective Therapies (‘IMPACT’), for investigators to consider adopting before embarking on clinical studies, the aim of which is to improve the likelihood of translating novel cardioprotective interventions into the clinical setting for patient benefit.publishersversionPeer reviewe
Staggered flux and stripes in doped antiferromagnets
We have numerically investigated whether or not a mean-field theory of spin
textures generate fictitious flux in the doped two dimensional -model.
First we consider the properties of uniform systems and then we extend the
investigation to include models of striped phases where a fictitious flux is
generated in the domain wall providing a possible source for lowering the
kinetic energy of the holes. We have compared the energetics of uniform systems
with stripes directed along the (10)- and (11)-directions of the lattice,
finding that phase-separation generically turns out to be energetically
favorable. In addition to the numerical calculations, we present topological
arguments relating flux and staggered flux to geometric properties of the spin
texture. The calculation is based on a projection of the electron operators of
the model into a spin texture with spinless fermions.Comment: RevTex, 19 pages including 20 figure
Tomographic Quantum Cryptography
We present a protocol for quantum cryptography in which the data obtained for
mismatched bases are used in full for the purpose of quantum state tomography.
Eavesdropping on the quantum channel is seriously impeded by requiring that the
outcome of the tomography is consistent with unbiased noise in the channel. We
study the incoherent eavesdropping attacks that are still permissible and
establish under which conditions a secure cryptographic key can be generated.
The whole analysis is carried out for channels that transmit quantum systems of
any finite dimension.Comment: REVTeX4, 9 pages, 3 figures, 1 tabl
Direct Observation of a One Dimensional Static Spin Modulation in Insulating La1.95Sr0.05CuO4
We report the results of an extensive elastic neutron scattering study of the
incommensurate (IC) static spin correlations in La1.95Sr0.05CuO4 which is an
insulating spin glass at low temperatures. The present neutron scattering
experiments on the same x=0.05 crystal employ a narrower instrumental
Q-resolution and thereby have revealed that the crystal has only two
orthorhombic twins at low temperatures with relative populations of 2:1. We
find that, in a single twin, only two satellites are observed at (1, +/-0.064,
L)(ortho) and (0, 1+/-0.064, L)(ortho), that is, the modulation vector is only
along the orthorhombic b*-axis. This demonstrates unambiguously that
La1.95Sr0.05CuO4 has a one-dimensional static diagonal spin modulation at low
temperatures, consistent with certain stripe models. We have also reexamined
the x=0.04 crystal that previously was reported to show a single commensurate
peak. By mounting the sample in the (H, K, 0) zone, we have discovered that the
x=0.04 sample in fact has the same IC structure as the sample. The
incommensurability parameter d for x=0.04 and 0.05, where d is the distance
from (1/2, 1/2) in tetragonal reciprocal lattice units, follows the linear
relation d=x. These results demonstrate that the insulator to superconductor
transition in the under doped regime (0.05 </= x </= 0.06) in La2-xSrxCuO4 is
coincident with a transition from diagonal to collinear static stripes at low
temperatures thereby evincing the intimate coupling between the one dimensional
spin density modulation and the superconductivity.Comment: 9 pages 8 figure
Phantom Field with O(N) Symmetry in Exponential Potential
In this paper, we study the phase space of phantom model with O(\emph{N})
symmetry in exponential potential. Different from the model without O(\emph{N})
symmetry, the introduction of the symmetry leads to a lower bound on the
equation of state for the existence of stable phantom dominated attractor
phase. The reconstruction relation between the potential of O(\textit{N})
phantom system and red shift has been derived.Comment: 5 pages, 3 figures, replaced with the version to appear on Phys. Rev.
Cosmological Dynamics of Phantom Field
We study the general features of the dynamics of the phantom field in the
cosmological context. In the case of inverse coshyperbolic potential, we
demonstrate that the phantom field can successfully drive the observed current
accelerated expansion of the universe with the equation of state parameter
. The de-Sitter universe turns out to be the late time attractor
of the model. The main features of the dynamics are independent of the initial
conditions and the parameters of the model. The model fits the supernova data
very well, allowing for at 95 % confidence level.Comment: Typos corrected. Some clarifications and references added. To appear
in Physical Review
Propagation phase-contrast micro-computed tomography allows laboratory-based three-dimensional imaging of articular cartilage down to the cellular level
High-resolution non-invasive three-dimensional (3D) imaging of chondrocytes in articular cartilage remains elusive. The aim of this study was to explore whether laboratory micro-computed tomography (micro-CT) permits imaging cells within articular cartilage
Schwinger boson theory of anisotropic ferromagnetic ultrathin films
Ferromagnetic thin films with magnetic single-ion anisotropies are studied
within the framework of Schwinger bosonization of a quantum Heisenberg model.
Two alternative bosonizations are discussed. We show that qualitatively correct
results are obtained even at the mean-field level of the theory, similar to
Schwinger boson results for other magnetic systems. In particular, the
Mermin-Wagner theorem is satisfied: a spontaneous magnetization at finite
temperatures is not found if the ground state of the anisotropic system
exhibits a continuous degeneracy. We calculate the magnetization and effective
anisotropies as functions of exchange interaction, magnetic anisotropies,
external magnetic field, and temperature for arbitrary values of the spin
quantum number. Magnetic reorientation transitions and effective anisotropies
are discussed. The results obtained by Schwinger boson mean-field theory are
compared with the many-body Green's function technique.Comment: 14 pages, including 7 EPS figures, minor changes, final version as
publishe
Stability of metallic stripes in the extended one-band Hubbard model
Based on an unrestricted Gutzwiller approximation (GA) we investigate the
stripe orientation and periodicity in an extended one-band Hubbard model. A
negative ratio between next-nearest and nearest neighbor hopping t'/t, as
appropriate for cuprates, favors partially filled (metallic) stripes for both
vertical and diagonal configurations. At around optimal doping diagonal
stripes, site centered (SC) and bond centered (BC) vertical stripes become
degenerate suggesting strong lateral and orientational fluctuations. We find
that within the GA the resulting phase diagram is in agreement with experiment
whereas it is not in the Hartree-Fock approximation due to a strong
overestimation of the stripe filling. Results are in agreement with previous
calculations within the three-band Hubbard model but with the role of SC and BC
stripes interchanged.Comment: 10 pages, 8 figure
- …